
"Forces \& Newton's Laws of Motion"
Broughton High School of wake county

Physical Science Notebook Table of Contents

Chapter 3 - "Forces \& Laws of Motion"

Pg. \#	Date	Description	Turned In	Received Back
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

Physical Science Vocabulary

Vocabulary for Chapter 3: Forces
Period: \qquad

No.\#	Term	Page \#	Definition
	Air Resistance		
	Centripetal Acceleration		
	Centripetal Force		
	Griction		
	Momentum		
	Sliding Friction		
	Static Friction		
	Rolling Friction of Motion		

Explain the Force of the Karate Kick?

Vocabulary for Chapter 3: Forces

No.\#	Term	Page $\#$	Definition
	Newton's 2 of Mot Law		
	Newton's 3 of Motion	Maw	
	Law of Conservation of Momentum		
	Law of Universal Gravitation		
	Terminal Velocity		

Einstein's Maze

Types of Forces

1. Force: is a push or pull that one object exerts on another object.
2. Balanced Force - is when two equal and opposite forces are applied on a body in two exactly opposite directions. When equal and opposite forces act on a body, and the body does not move then it (body) is said to be in equilibrium or we can also state as balanced forces acting on an object.

The forces on the person
arebalanced.

3. Unbalanced Force - Forces that produce a non-zero net force, which changes an object's motion. Unbalanced forces are forces that produce a non-zero net force, which changes an object's motion. The result of an unbalanced force is acceleration of an object.

Unbalanced Force

The forces on the book are balanced.

- Unbalanced Forces - Forces acting in opposite directions are substrated from one another to obtain the total force being exerted and the direction of the force.

MOTION MATCHING

Name

\qquad
Match the correct term in Column I with its definition in Column II.

I

1.
2. \qquad centripetal
3. \qquad mass
acceleration
4. \qquad velocity weight
5. \qquad gravity
6. \qquad inertia
7. \qquad
\qquad
10
11 \qquad newton

Newton's Laws of Motion Definitions

Newton's $\mathbf{1}^{\text {st }}$ Law of Motion - referred as the "Law of Inertia," states that the velocity of an object will remain constant unless a net force acts on it.

REST
or

UNIFORM
MOTION IN A STRAIGHT LINE

Newton's $\mathbf{2}^{\text {nd }}$ Law of Motion - states that when a net force acts on an object, the object will accelerate in the direction of the net force.

THE MUDIZE FOHZCE
THE MMDIRE ACRELEIRATTOP

Newton's $\mathbf{3}^{\text {rd }}$ Law of Motion - states that when one object exerts a force on a second object, the second object exerts a force on the second object, the second object exerts a force on the first object that is equal in magnitude and opposite in direction.

First Law
objects at rest remain at rest and objects in motion remain in motion in a straight line unless acted upon by an unbalanced force.

Second Law
Force equals mass times acceleration (or $f=$ ma).

Third Law
For every action there is an equal and opposite reaction.

Newton's Laws of Motion A

Fill in the blanks with words from the box.

acceleration	decreases	equal
increases	inertia	mass
Newton	opposite	reaction

Sir Isaac Newton

The English scientist Sir Isaac \qquad developed three laws of motions. His first law is called the law of \qquad . This law states that objects in motion will stay in \qquad and objects at rest will stay at unless acted upon by an
(a

unbalanced \qquad .

Newton's second law of motion states that an unbalanced force is equal to \qquad time's
\qquad . This means that as more unbalanced force is applied to an object, its acceleration
\qquad . It also means that as an object's mass increases, the acceleration
\qquad for a given unbalanced force.

Newton's third law of motion states that for every action there is an \qquad , but
\qquad reaction. This means that whenever one object pushes on another object, the other object pushes equally hard back.

Can your eyes follow the maze?

Broughton High School of wake county

Newton's Laws of Motion B

Have you ever been riding in a car when the driver stopped suddenly? How did your body move as the car came to a stop? Did it feel like your body was moving forward?

When you felt this happening you experienced Newton's first law of motion. Newton's first law of motion says that an object in motion will stay in motion and an object at rest will stay at rest unless acted on by
an unbalanced force. In the car your body was in motion, traveling at the same speed as the car. When the car stopped, your body stayed in motion. If you were not wearing a seatbelt and you were traveling very fast, your body could continue to move forward through the windshield!

This idea is called inertia.

1. Explain why your body feels like it is being pushed back when the car starts back up again:

If a ping pong ball and a basketball were both dropped at the same time from the roof of our school, which would hit the ground with a greater force? Common sense tells us that the basketball ball would. The difference in forces would be caused by the different masses of the balls. Newton stated this relationship in his second law, the force of an object is equal to its mass times its acceleration.
2. List two other situations where Newton's 2nd Law may apply.

Imagine a rocket is being launched from the earth. Hot gases are pushed out from the bottom of the rocket as the rocket is pushed upward. The force of the gases pushing against the surface of the earth is equal and opposite to the force with which the rocket moves upward. The motion of the rocket can be explained by Newton's third law, for every action there is an equal and opposite reaction. In other words, when one object exerts a force on another object, the second object exerts a force of equal strength in the opposite direction on the first object.

Fill in the table:

Law	Description/Definition	Everyday Example
1st Law of Motion		
2nd Law of Motion		

Broughton High School of wake county

3rd Law of Motion		

Newton's Laws of Motion Worksheet

Ilewton's Laws: Using the Main Ideas

Lool. carefully at the illustrations below. Decide which of Newton's laws is illus rated in each example. Then explain how the situation illustrates the law.

Broughton High School of wake County

"Newton's Laws of Motion: Which Law?"

We're told that Sir Isaac Newton discovered some things about motion when an apple dropped on his head. Whatever "force" was behind his discoveries, we have benefited from his discoveries. Here are his three laws of motion. You should be familiar with them.

Section1

Directions: Fill in the missing words in each of the three laws. Then tell which law fits each example below.
Which Law? $1^{\text {st }}$ Law $2^{\text {nd }}$ Law $3^{\text {rd }}$ Law
\qquad 1. A frog leaping upward off his/her lily pad is pulled downward by gravity and lands on another lily pad instead of continuing on in a straight line.
\qquad 2. As the fuel in a rocket ignites, the force of the gas expansion and explosion pushes out the back of the rocket and pushes the rocket forward.

\qquad 3. When you are standing up in a subway train, and the train suddenly stops, your body continues to go forward.
\qquad 4. After you start up your motorbike, as you give it more gas, it goes faster.
\qquad 5. A pitched baseball goes faster than one that is gently thrown.
6. A swimmer pushes water back with his arms, but his body moves forward.

Newton's 1 st Law of Motion

An Object at \qquad stays at \qquad or an object that is \qquad at a
\qquad in a straight \qquad
keeps moving at that \qquad unless another \qquad acts on it.

Newton's 2nd Law of Motion

The amount of \qquad needed to make an object change its depends on the
\qquad of the object and the __ required.
\qquad
\qquad 7. As an ice skater pushes harder with his / her leg muscles, he/she begins to move faster.
\qquad 8. When Bobby, age 5 , and his dad are skipping pebbles on the pond, the pebbles that Bobby's dad throws go farther and faster than his.
9. When you paddle a canoe, the canoe goes forward.
10. A little girl who Has been pulling a sled behind her in the snow is crying because when she stopped to tie her hat on, the sled kept moving and hit her in the back of her legs.

Newton's Brd Law of Motion

For every \qquad (or force), there is
an \qquad and \qquad
action (or force).

Broughton High School of wake County

Key Terms - Newton's Laws of Motion

Section 2

Directions: Complete the following sentences using the terms below.
Unbalanced Force First Second Third Friction Speed
11. A \qquad is a push or pull on an object.
12. When an object remains at rest or moves in a straight line with constant speed until it is acted upon by an unbalanced force, the \qquad law of motion is demonstrated.
13. $A(n)$ \qquad force allows you to pick up your book bag.
14. The \qquad law of motion says that for every action there is an equal but opposite reaction.
15. \qquad is a way to measure the rate of motion.
16. If you are trying to ice skate and you fall, the \qquad was too great between your skates and the ice.

Section 3

NEWTON'S LAWS - VOCABULARY REVIEW MATCHING

17	Tendency for an object to resist changes in motion	a. Sir Isaac Newton
18	Also known as Law of Inertia	b. Inertia
19	Push or Pull	c. Force
20	Law based on the equation $\mathrm{F}=\mathrm{mxa}$	d. Newton's $1^{\text {st }}$ Law
21	Unit of Force	e. Newton's $2^{\text {nd }}$ Law
22	Object Changing Position	f. Newton's $3^{\text {rd }}$ Law
23	The greater the force on an object, the greater the \qquad of an object.	g. Newton's
24	Scientist that formatted 3 Laws of Motion	h. $\mathrm{F}=\mathrm{mxa}$
25	For every action there is an equal and opposite reaction.	i. Motion
26	Equation showing relationship between force, mass, and acceleration.	j. Acceleration
27	The greater the \qquad of an object, the smaller the acceleration if a similar force is a	k. Mass

Section 4

Directions: Circle the term in parentheses that makes the statement correct.
28. (Velocity, Speed) is an object's displacement divided by time.
29. (Displacement, Acceleration) is the change in an object's velocity divided by the amount of time required for the change to occur.
30. A (force, motion) is a push or a pull.
31. When scientists need to measure force, they use the (Newton, degree).
32. The first law of motion is sometimes called the law of (inertia, force).

Broughton High School of wake County

Section 5

Newton's $\mathbf{2}^{\text {nd }}$ Law AND Newton's $3^{\text {rd }}$ Law

Directions: for each of the following, write the letter of the choice that best completes the sentence.
33. When you exert a force on an object it exerts \qquad force back on you.
a. a stronger
b. the same
34. When volleyball players jump into the air, the primary force acting to make them land back on the ground is
a. mass
b. gravity
35. Forces always act in \qquad .
a. pairs
b. singles
36. In a game of tug of war, the team that wins has exerted a greater \qquad force.
a. unbalanced
b. mass
\qquad 37. When you are pushing on a large door, \qquad friction keeps you from sliding backwards.
a. unbalanced
b. static
38. \qquad is determined by gravity.
a. weight
b. mass
39. A component of inertia is \qquad .
a. mass
b. friction
40. \qquad friction causes a car tire to turn on the road.
a. static
b. sliding
41. If the same force is applied to two different objects, the one with the \qquad mass has a smaller acceleration.
a. larger
b. smaller

Section 6

Predicting and Explaining Newton's Laws of Motion
 THE LAWS OF MOTION

$\mathbf{1}^{\text {st }}$ Law: states that every object maintains a constant velocity unless acted on by unbalanced force.
$\mathbf{2}^{\text {nd }}$ Law: describes the relationship among acceleration, force, and mass.
$\mathbf{3}^{\text {rd }} \mathbf{L a w}$: states that every action there is an equal and opposite force.
Directions: Tell which law of motion is described by the following situations
42. This law of motion is activated each time you take a step on the earth.
43. The amount of force that must be applied on a car's brakes to make it stop is related to this law of motion.
44. Inertia, the resistance any object has to a change in its velocity, is related to this law of motion.
45. When you bump into someone and you both fall back, this law of motion is illustrated.
46. An empty car requires less force on the brakes to stop than a car filled with people.
47. Your body continuous traveling forward when a forward-moving vehicle to a sudden stop.

Section 7

Directions: Complete the following sentences using the terms below.

$$
\text { Acceleration } \begin{array}{lllll}
& \text { Velocity } & \text { direction } & \text { negative } & \text { positive }
\end{array} \text { time }
$$

48. Acceleration occurs when an object's \qquad changes.
49. When an object speeds up, it has \qquad acceleration.
50. When an object's final velocity is less than its initial velocity, however, it has \qquad acceleration.
51. \qquad is accelerating, even if its speed remains the same.
52. Acceleration can be calculated by dividing the change in velocity by the \qquad interval in which the change occurred.
53. The SI unit of \qquad is $\mathrm{m} / \mathrm{s}^{2}$.

Section 8

Directions: Write the term that matches each description in items 54 through 59 below on the spaces provided. Unscramble the boxed letters to spell the term that answers questions 60.

54. A measure of an object's tendency to remain at rest or continue at constant speed.
55. How far something travels
56. How far something ends up from its starting place
57. A push or pull
58. Forces that result in no change in an object's motion
59. The force that resists motion
60. An object will remain at rest or move in a straight line with constant speed unless it is acted upon by a force.

Section 9

Acceleration, motion, and forces - Vocabulary Review Matching

$=$| 61 | Result in a net force of zero | A. Force |
| :--- | :--- | :--- |
| -62 | The tendency of an object to resist any change in its motion | B. Net Force |
| 63 | Cause an object's velocity to change | C. Unbalanced Force |
| 64 | A push or pull that can change an object's motion | D. Balanced Force |
| 65 | States that an object at rest will remain at rest unless acted upon by a
 unbalanced force | E. Inertia |
| 66 | The combined force on an object | F. Newton's first law of motion |

Newton's Second Law I

Broughton High School of wake county

	Letter stands for	Units
\mathbf{F}		
\mathbf{M}		
\mathbf{a}		

67. What forces is necessary to accelerate a $1.6 \times 10^{3} \mathrm{~kg}$ car at $2.0 \mathrm{~m} / \mathrm{sec}^{2}$?

Formula	Set Up \& Solve	Answer

68. What is the acceleration of a 0.143 kg baseball that is dropped if the earth pulls on the baseball with a force of 1.4 Newton's?

Formula	Set Up \& Solve	Answer

69. A sailboat and its crew have a mass of 655 kg . If the force on the boat is 895 N , what is its acceleration?

Formula	Set Up \& Solve	Answer

70. A force of 115 N causes a mass to accelerate at $0.657 \mathrm{~m} / \mathrm{sec}^{2}$. What is the mass?

Formula	Set Up \& Solve	Answer

71. A $4,500 \mathrm{~kg}$ helicopter accelerates upward at $2.0 \mathrm{~m} / \mathrm{sec}^{2}$. What force does the helicopter exert?

Formula	Set Up \& Solve	Answer

Broughton High School of wake county

Newton's Second Law II

72. The maximum force of a grocery bag can withstand is 250 Newton's. If 20.0 kg of groceries are lifted from the floor to a table with an acceleration of $5.0 \mathrm{~m} / \mathrm{sec}^{2}$. Will the bag tear or hold?

Formula	Set Up \& Solve	Answer

73. A box weighting 100 Newton's is pushed from rest to a velocity of $10 \mathrm{~m} / \mathrm{s}$. What force was applied to the box?

Formula	Set Up \& Solve	Answer

74. How much force does a 90 N person experience when the car they are traveling in stops from a speed of $55 \mathrm{~m} / \mathrm{s}$?

Formula	Set Up \& Solve	Answer

75. What force is needed to accelerate a 1.0 kg projectile from rest to a speed of $100 \mathrm{~m} / \mathrm{s}^{2}$?

Formula	Set Up \& Solve	Answer

76. A $5,000 \mathrm{~kg}$ truck slows down from $30 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$. How much force is needed for this to happen?

Formula	Set Up \& Solve	Answer

77. If it takes a speed skater 900 N of force to accelerate from rest to $10 \mathrm{~m} / \mathrm{s}^{2}$, what is the mass of the skater?

Formula	Set Up \& Solve	Answer

Broughton High School of wake county

Key Terms - Force and Acceleration Problems I

78. With what force will a car hit a tree if the car has a mass of $3,000 \mathrm{~kg}$ and it is accelerating at a rate of $12 \mathrm{~m} / \mathrm{s}^{2}$?

Formula	Set Up \& Solve	Answer

79. A 10kg bowling ball would require what force to accelerate it down an alleyway at a rate of $3 \mathrm{~m} / \mathrm{s}^{2}$?

Formula	Set Up \& Solve	Answer

80. What is the mass of a falling rock if it hits the ground with a force of 147 Newton's?

Formula	Set Up \& Solve	Answer

81. What is the acceleration of a softball if it has a mass of 0.50 kg and hits the catcher's glove with a force of 25 N ?

Formula	Set Up \& Solve	Answer

82. What is the mass of a truck if it is accelerating at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$ and hits a parked car with a force of $14,000 \mathrm{~N}$?

Formula	Set Up \& Solve	Answer

83. A baseball applies 200 N to a catcher's mitt when caught. The baseball has a mass of 0.142 kg . If it takes 0.200 seconds for the ball to leave the pitcher's hand and hit the mitt, what is the baseball's velocity?

Formula	Set Up \& Solve	Answer

Force and Acceleration Problems II

84. What force is required to move a 10,000 kilogram lead ball at $18 \mathrm{~m} / \mathrm{s}^{2}$?

Formula	Set Up \& Solve	Answer

85. If you apply a 45 N force on a 15 kg wagon, what is the rate of acceleration?

Formula	Set Up \& Solve	Answer

86. Calculate the mass of a discus thrown with a force of 9.0 N to accelerate it at $6.0 \mathrm{~m} / \mathrm{s}^{2}$?

Formula	Set Up \& Solve	Answer

87. What is the acceleration of a $15,000 \mathrm{~kg}$ truck with a net force of $7,500 \mathrm{~N}$?

Formula	Set Up \& Solve	Answer

88. A runner with a mass of 60 kg accelerates at $2.2 \mathrm{~m} / \mathrm{s}^{2}$. What is the runner's net force?

Formula	Set Up \& Solve	Answer

What $\mathbf{2}$ forces that are acting against each other?

Broughton High School of wake county

Newton's Laws Worksheet III

89. While dragging a crate a workman exerts a force of 628 N . Later, the mass of the crate is increased by a factor of 3.8. If the workman exerts the same force, how does the new acceleration compare to the old acceleration?

Formula	Set Up \& Solve	Answer

90. A rocket accelerates in a space at a rate of "1 g." The rocket exerts a force of 12,482 N. Later in flight the rocket exerts $46,458 \mathrm{~N}$. What is the rockets new acceleration? What is the rocket's new acceleration in "g's?"

Formula	Set Up \& Solve	Answer

91. A race car exerts $19,454 \mathrm{~N}$ while the car travels at a constant speed of $201 \mathrm{mph}, 91.36 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the car?

Formula	Set Up \& Solve	Answer

92. A locomotive's mass is $18,181.81 \mathrm{~kg}$. What is its weight?

Formula	Set Up \& Solve	Answer

93. A small car weighs $10,168.25 \mathrm{~N}$. What is its mass?

Formula	Set Up \& Solve	Answer

Broughton High School of wake County

Newton's Laws Worksheet III

94. What is the weight of an infant whose mass is 1.76 kg ?

Formula	Set Up \& Solve	Answer

95. An F-14's mass is $29,545 \mathrm{~kg}$. What is its weight?

Formula	Set Up \& Solve	Answer

96. What is the mass of a runner whose weight is 648 N ?

Formula	Set Up \& Solve	Answer

97. The surface gravity of the Sun is $274 \mathrm{~m} / \mathrm{s}^{2}$. How many Earth g's is this?

Formula	Set Up \& Solve	Answer

98. The planet Mercury has 0.37 g 's compared to the Earth. What is the mass of a person weighting 257 kg ?

Formula	Set Up \& Solve	Answer

99. What is the acceleration on Mercury of a 25 kg baseball thrown at $7 \mathrm{~m} / \mathrm{s}^{2}$?

Formula	Set Up \& Solve	Answer

Newton's Laws Worksheet III
100. A plane crashes with a de-acceleration of $185 \mathrm{~m} / \mathrm{s} 2$. How many g 's is this?

Formula	Set Up \& Solve	

101. A baseball traveling $38 \mathrm{~m} / \mathrm{s}$ is caught by the catcher. The catcher takes 0.1 seconds to stop the ball. What is the acceleration of the ball and how many g's is this?

Formula	Set Up \& Solve	Answer

102. A very fast car accelerates from a rest to $32 \mathrm{~m} / \mathrm{s}$, $(71.68 \mathrm{mph})$, in 4.2 seconds. What is acceleration of the car and how many g 's is this?

Formula	Set Up \& Solve	Answer

103. The Space Shuttle travels from launch to $529.2 \mathrm{~m} / \mathrm{s}$ in 6.0 seconds. What is the shuttle's acceleration?

Formula	Set Up \& Solve	Answer

104. What is the acceleration of the shuttle and how many g's is this?

Formula	Set Up \& Solve	Answer

What is Inertia?
\qquad

Newton's Laws Worksheet III

105. The space shuttle's mass, (with boosters) is $654,506 \mathrm{~kg}$. The average force of the shuttle's engines is $25,656,635.2 \mathrm{~N}$. What is the acceleration of the shuttle in $\mathrm{m} / \mathrm{s}^{2}$ and force of gravity?

Formula	Set Up \& Solve	Answer

106. What is the SI weight of a McDonald's Quarter Pounder sandwich?

Formula	Set Up \& Solve	Answer

Broughton High School of wake county

Newton's Laws Worksheet III

Give the equation used for each problem and show all work.

107. What net force is required to accelerate a car at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ if the car has a mass of $3,000 \mathrm{~kg}$?

Force $=$ \qquad , mass = \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

108. A10 kg bowling ball would require what force to accelerate down an alleyway at a rate of $3 \mathrm{~m} / \mathrm{s}^{2}$?

Force $=$ \qquad , mass = \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

109. Sally has a car that accelerates at $15 \mathrm{~m} / \mathrm{s}^{2}$. If the car has a mass of $15,000 \mathrm{~kg}$, how much force does the car produce?

Force $=$ \qquad , mass = \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

110. What is the mass of a falling rock if it produces a force of $1,247 \mathrm{~N}$?

Force = \qquad mass $=$ \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

Broughton High School of wake County

Newton's Laws Worksheet III

111. What is the mass of a truck if it produces a force of $14,000 \mathrm{~N}$ while accelerating at a rate of $5 \mathrm{~m} / \mathrm{s}$?

Force $=$ \qquad mass = \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

112. What is the acceleration of softball if it has a mass of 0.75 kg and hits the catcher's glove with a force of 250 N ?

Force $=$ \qquad mass = \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

113. Your own car has a mass of $2,000 \mathrm{~kg}$. If your car produces a force of $65,000 \mathrm{~N}$, how fast will it accelerate? $\mathrm{F}=$ \qquad
Force $=$ \qquad mass = \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

114. Sally wants to accelerate even faster, so she removes 500 kg of mass from her car. How fast will her $1,500 \mathrm{~kg}$ car accelerate if it produces $45,000 \mathrm{~N}$ of force?

Force $=$ \qquad mass $=$ \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

Broughton High School of wake county

Newton's Laws Worksheet III

114. Sally challenges you to a race. On the first turn you run off the course and your car strikes a large bale of hay. Your car still produces 5,000 N of force, but now it accelerates at only $2 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of your car now that the bale of hay is stuck to it?

Force $=$ \qquad , mass = \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

115. Even though she is way ahead of you, Sally switches her car to run on nitrous oxide fuel. The nitrous oxide allows her car to develop $100,000 \mathrm{~N}$ of force. What is Sally's acceleration if her car has a mass of 500 kg ?

Force = \qquad , mass = \qquad acceleration= \qquad

Formula	Set Up \& Solve	Answer

1. What kind of insect is this?
2. How much force can the front pinchers of this insect exert?

Newton's Laws of Motion

Directions: Fill in the missing words in each of the three laws. Then tell which law fits each example below.

Which Law? $1^{\text {st }}$ Law

Newton's Law: \qquad Newton's Law: \qquad

Newton's Law: \qquad

Newton's Law: \qquad

Newton's Laws of Motion

Directions: Fill in the missing words in each of the three laws. Then tell which law fits each example below.
Which Law? $1^{\text {st }}$ Law $\quad 2^{\text {nd }}$ Law $3^{\text {rd }}$ Law

Newton's Law: \qquad Newton's Law: \qquad Newton's Law: \qquad

Newton's Law: \qquad

Newton's Law: \qquad

Newton's Law: \qquad

First Law

Objects at rest remain at rest and objects in motion remain in motion in a straight line unless acted upon by an unbalanced force.

Second Law
Force equals mass times acceleration (or $\mathrm{f}=\mathrm{ma}$).

Third Law
For every action there is an equal and opposite reaction.

Impulse is defined as the integral of a force acting on an object, with respect to time. This means that impulse contains the product of force and time.

- Impulse changes the momentum of an object. As a result, a large force applied for a short period of time can produce the same momentum change as a small force applied for a long period of time.
- An impulse can act on an object to change either its linear momentum, angular momentum, or both.

IMPULSE = (FORCE) X (TIME)

Momentum is connected to force by impulse, which is simply if the force has a constant magnitude during its action. If the force changes with time, then one must integrate to find the impulse:

- Momentum is a vector. This means it has direction and magnitude. Momentum's magnitude is calculated by the formula $p=m v$.
- The Momentum-Impulse Theorem states that the change in momentum of an object is equal to the impulse exerted on it: (change in momentum) = (impulse)

Impulse Practice Problems

$$
\begin{aligned}
\text { Impulse } & =\text { Force } \times \text { time }=\vec{F} \Delta t \\
\Delta t & =t_{\text {final }}-t_{\text {initial }}
\end{aligned}
$$

Impulse \& Momentum Worksheets

Impulse

Momentum Practice Problems

1. What is the momentum of a 70 kg runner traveling at $10 \mathrm{~m} / \mathrm{s}$?

Formula	Set Up \& Solve	Answer

2. What is the momentum of an 800 kg car traveling at $20 \mathrm{~m} / \mathrm{s}$?

Formula	Set Up \& Solve	Answer

3. What is the momentum of a 47 gram tennis ball that is traveling at $40 \mathrm{~m} / \mathrm{s}$?

Formula	Set Up \& Solve	Answer

4. What is the momentum of a 120 pound bicyclist that is traveling at 25 mph ?

Formula	Set Up \& Solve	Answer

Momemtum in: $m v=m o m e n t u m$ out Kinetic energy in: $\frac{1}{2} m v^{2}=$ kinetic energy out

