
Broughton High School of Wake County

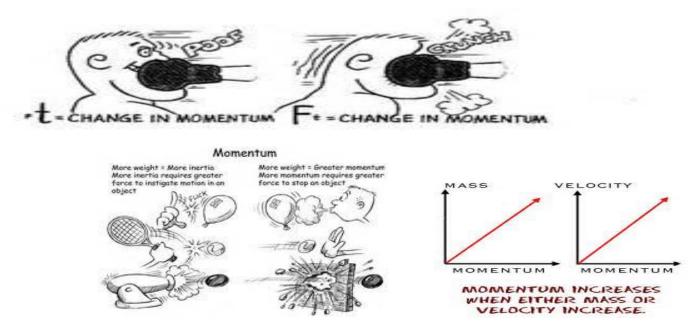
Physical Science Vocabulary

Vocabulary for Chapter 4

No.#	Term	Page #	Definition
-	Mechanical Energy		
	Elastic Potential Energy		
-	Joule		
	Potential Energy		
	Kinetic Energy Formula		
	Law of Conservation of energy		
	Chemical Potential Energy		
	Gravitational Potential Energy		
	Kinetic Energy		
	Law of Conservation of Energy		
	Nuclear Fusion		
	Energy		
	Electrical Energy		
	Nuclear Energy		
	Nuclear Fission		

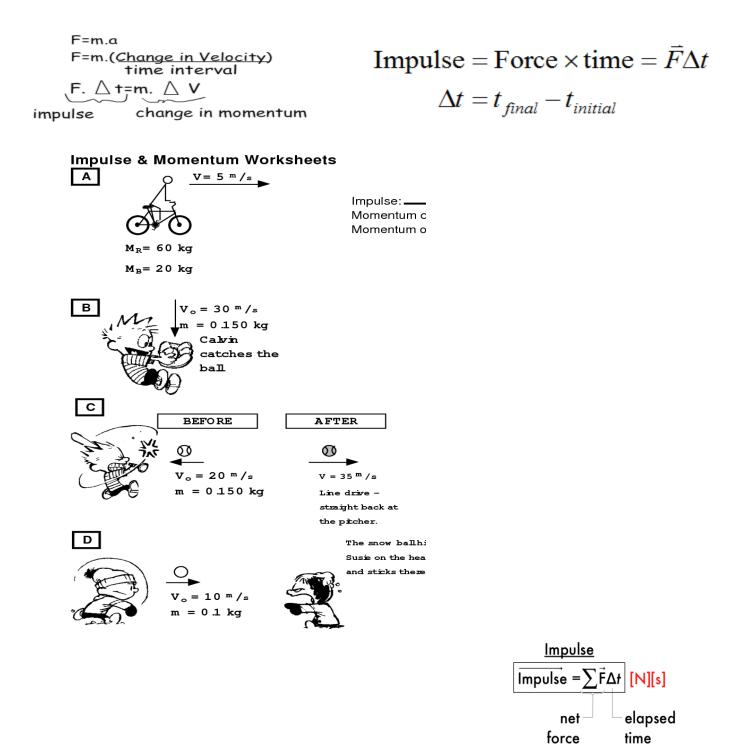
Impulse is defined as the integral of a force acting on an object, with respect to time. This means that impulse contains the product of force and time.

- Impulse changes the momentum of an object. As a result, a large force applied for a short period of time can produce the same momentum change as a small force applied for a long period of time.
- An impulse can act on an object to change either its linear momentum, angular momentum, or both.


IMPULSE = (FORCE) X (TIME)

F=m.a F=m.(<u>Change in Velocity</u>) time interval t=m. Λ change in momentum impulse

Momentum is connected to force by impulse, which is simply if the force has a constant magnitude during its action. If the force changes with time, then one must integrate to find the impulse:


- Momentum is a vector. This means it has direction and magnitude. Momentum's magnitude is calculated by the formula p=mv.
- The Momentum-Impulse Theorem states that the change in momentum of an object is equal to the impulse exerted on it: (change in momentum) = (impulse)

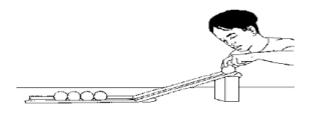
Physical Science 2015

Impulse Practice Problems

Momentum Practice Problems

1. What is the momentum of a 70 kg runner traveling at 10 m/s?

Formula	Set Up & Solve	Answer


2. What is the momentum of an 800 kg car traveling at 20 m/s?

Formula	Set Up & Solve	Answer

3. What is the momentum of a 47 gram tennis ball that is traveling at 40 m/s?

Formula	Set Up & Solve	Answer			

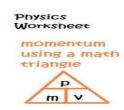
4. What is the momentum of a 120 pound bicyclist that is traveling at 25 mph?

Momentum in: mv = momentum out mv² = kinetic energy out 1 Kinetic energy in: 2 =(One ball One ball in out

Momentum

Granny whizzes around the rink and is suddenly confronted with Ambrose at rest directly in her path. Rather than knock him over, she picks him up and continues in motion without "braking." Consider Granny and Ambrose as two parts of one system. Since no outside forces act on the system, the momentum of the system before the collision equals the momentum of the system after the collision.

Before Collision				
Granny's Mass	80 kg			
Granny's Speed	3 m/s			
Granny's Momentum				
Ambrose's Mass	40 kg			
Ambrose's Speed	0 m/s			
Ambrose Momentum				
Total Momentum				



1. After the collision, does Granny's speed increase or decrease?

After the collision, does Ambrose's speed increase or decrease?

3. After the collision, what is the total mass of Granny + Ambrose?

4. After the collision, what is the total momentum of Granny + Ambrose?

Mr. Davis

FORMS OF ENERGY

Worksheet on different types of energy

Each type of energy has its advantages and disadvantages. Research each source and complete the table below.

Energy source	Source always available	Good points	Bad points	When/where is the soure worth exploiting?
Solar				
Wind				
Wave				
Biomass				
Geothermal				
Hydropower				
Tides				
Coal				
Oil				
Natural gas				
Nuclear power				

Forms of Energy

All forms of energy fall under two categories:

POTENTIAL

Potential energy is stored energy and the energy of position (gravitational).

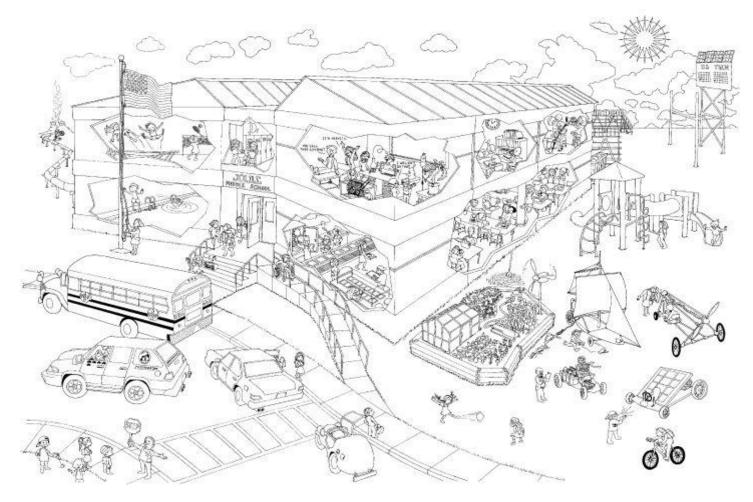
CHEMICAL ENERGY is the energy stored in the bonds of atoms and molecules. Biomass, petroleum, natural gas, propane and coal are examples.

STORED MECHANICAL ENERGY is energy stored in objects by the application of force. Compressed springs and stretched rubber bands are examples.

NUCLEAR ENERGY is the energy stored in the nucleus of an atom—the energy that holds the nucleus together. The nucleus of a uranium atom is an example.

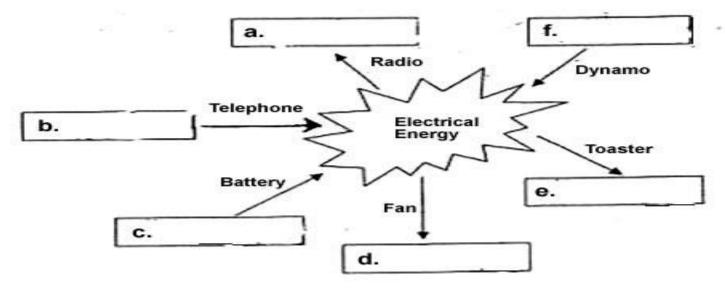
GRAVITATIONAL ENERGY

is the energy of place or position. Water in a reservoir behind a hydropower dam is an example.


KINETIC

Kinetic energy is motion. It is the motion of waves, electrons, atoms, molecules and substances.

ELECTRICAL ENERGY is the movement of electrons. Lightning and electricity are examples. RADIANT ENERGY is electromagnetic energy that travels in transverse waves. Solar energy is an example. THERMAL ENERGY or heat is the internal energy in substances—the vibration or movement of atoms and molecules in substances. Geothermal is an example. MOTION is the movement of a substance from one place to another. Wind and hydropower are examples. **SOUND** is the movement of energy through substances in longitudinal waves.

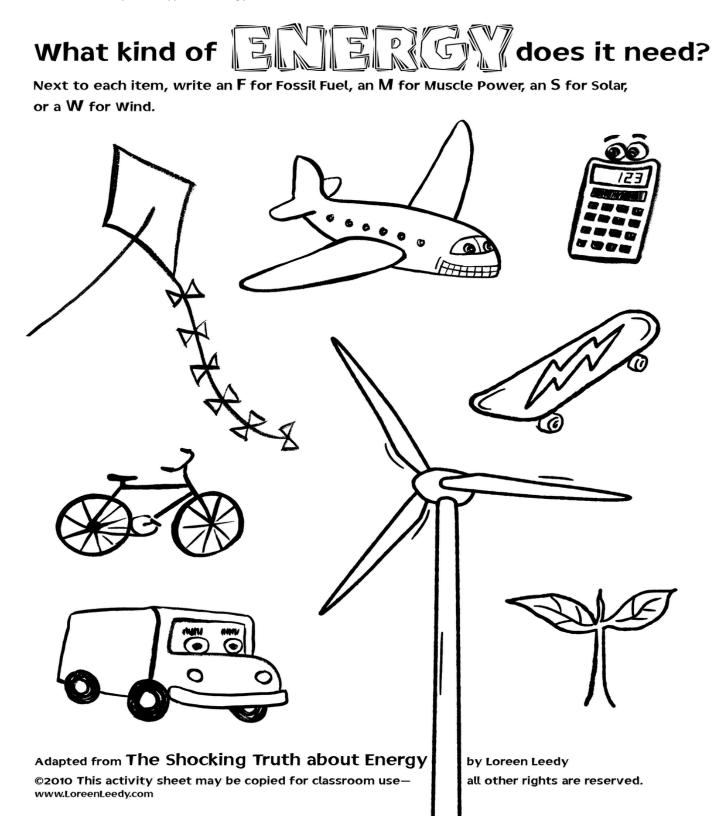

Forms of Energy I

Directions: Identify types of Energy forms in the picture below.

Forms of Energy II

Directions: List the <u>7 Forms</u> of Energy.

Identify the form of Energy

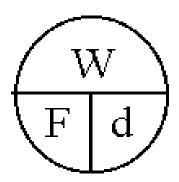

Directions: Identify each type of Energy in the chart below.

Energy Transformation Game

Sun	Windmill	Microwave	Solar Calculator	Crane	Satellite Dish	Siren
	×			Non	4	è
Tanning Bed	Nuclear Power Plant	Hot-air Balloon	Magnifying Glass	Candle	Electric Guitar	Firecracker
		ę	Q.	A.	Les la	X
Battery	Piano	Light Bulb	Mixer	Iron	Lightstick	Bicycle
٢		<u>.</u>		Ø		520
Television	Person Eating	Plant				
R	*	a constant				
$\mathbf{E}\mathbf{m} = \mathbf{I}$	Em = Electromagnetic				Mp = Mechanica	al (potential)
Т	= Thermal		C = Chemical		Mk = Mechani	cal (kinetic
			N = Nuclear			

Identify the Form of Energy III

Directions: Identify each type of Energy in the chart below.

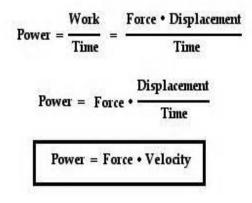


Work and Power Definitions

Work: is the product of a force exerted on an object multiplied by the object's displacement.

- Work can be defined as transfer of energy.
- Work is done on an object when you transfer energy to that object. If one object transfers (gives) energy to a second object, then the first object does work on the second object.
- Work is the application of a force over a distance.
- Work is the force is equal to the weight of the object, and the distance is equal to the height of the shelf (W= Fxd).

Work Formula



Power – is the rate at which is done.

- Power is the work done in a unit of time. In other words, power is a measure of how quickly work can be done.
- The unit of power is the Watt = 1 Joule/ 1 second.
- One common unit of energy is the kilowatt-hour (kWh).
- POWER (P) is the rate of energy generation (or absorption) over time: P = E/t
- Power's SI unit of measurement is the Watt, representing the generation or absorption of energy at the rate of 1 Joule/sec.

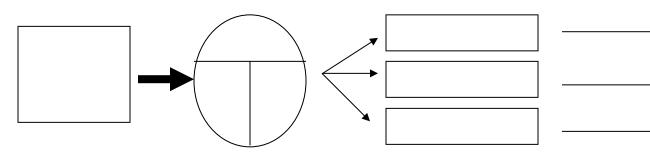
Power Formula

R Power-Measured in watts W Is the amount of work done

L, Currento Measured in amps A Is rate of flow of charge

V. Voltage Measured in volts V Difference of electric potential

WORK PROBLEMS I


Calculating Work: Work has a special meaning in science. It is the product of the force applied to an object and the distance the object moves. The unit of work is the Joule (J).

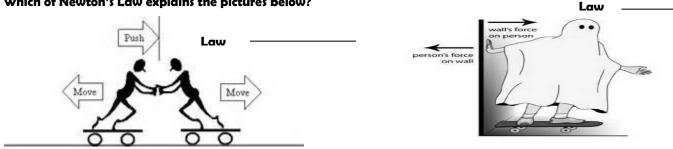
Formula

Manipulations

Solve For

Units

1. A book weighing 1.0 Newton is lifted 2 meters. How much work was done?


Formula	Set Up & Solve	Answer		
2. A force of 15 Newton's is used	to push a box along the floor a distance	of 3 meters. How much work was done?		
Formula	Set Up & Solve	Answer		

Formula	Set Up & Solve	Answer		

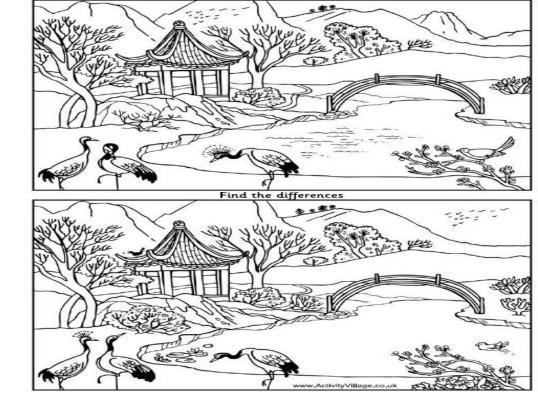
3. It took 50 joules to push a chair 5 meters across the floor. With what force was the chair pushed?

Formula	Set Up & Solve	Answer	

Which of Newton's Law explains the pictures below?

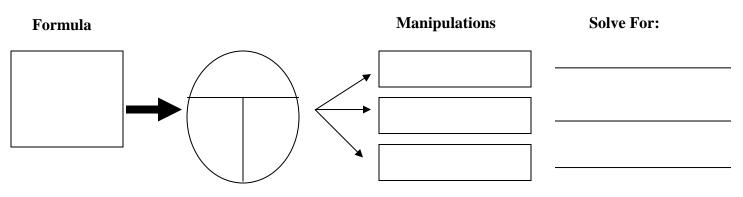
WORK PROBLEMS I

4. A force of 100 Newton's was necessary to lift a rock. A total of 150 joules of work was done? How far was the rock lifted?


Formula	Set Up & Solve	Answer

5. It took 500 Newton's of force to push a car 4 meters. How much work was done?

Formula	Set Up & Solve	Answer


6. A young man exerted a force of 9,000 Newton's on a stalled car but was unable to move it. How much work was done?

Formula	Set Up & Solve	Answer

Find The Differences?

WORK PROBLEMS II

7. A rock weighing 2 Newton's was lifted 3 meters. How much work was done?

Formula	Set Up & Solve	Answer

8. A rock weighing 6.5 Newton's was moved 2 meters. How much work was done?

Formula	Set Up & Solve	Answer
9 It took 600 Newton's of force	to move a car 4 meters. How much work w	vas dono?

10 Newton's of force to move a car 4 meters. How much work was done :

Formula	Set Up & Solve	Answer

10. It took 45 Newton's to lift a crate 1.5 meters. How much work was done?

Formula Set Up & Solve	Answer	

What is this method called?

STATE CONCLUSION

Physical Science 2015

WORK PROBLEMS II

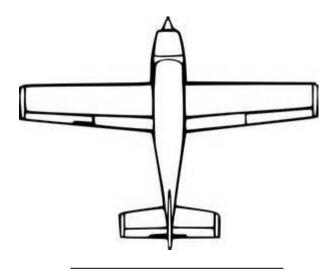
11	A hox weighing	3.2 Newton's w	vas moved 2.5 meters.	How much work	was done?
τт.	A DOX Weighing	5.2 NEWLOILS W	as moved 2.5 meters.	HOW INUCH WORK	was uone:

Formula	Set Up & Solve	Answer

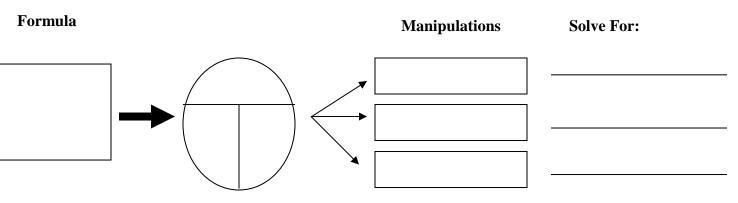
12. A box weighing 6.4 Newton's was moved 2.5 meters. How much work was done?

Formula	Set Up & Solve	Answer

13. 45 joules were expended to move a box weighing 30 Newton's. How many meters was it moved?


Formula	Set Up & Solve	Answer
		,;,m
		m

14. It took 50 joules to push a crate 2.5 meters. With what force was the crate pushed?


Formula	Set Up & Solve	Answer

Compare & Contrast the methods of flight.

WORK AND POWER PROBLEMS I

1. A box weighing 25 N is lifted 5.0 meters. Calculate the work done?

Set Up & Solve	Answer
	Set Up & Solve

2. A force of 2000 N is needed to lift a refrigerator. If the work done is 800 joules, how high was the refrigerator lifted?

Formula	Set Up & Solve	Answer

3. At least 2,500 Joules of work is needed to push a lawnmower for 100 meters. How much force was needed?

Formula	Set Up & Solve	Answer

4. Lifting a book 0.50 meters off your desk requires 15.0 Newton's. How much work is done?

Formula	Set Up & Solve	Answer

Which forces are acting on this weight lifter?

WORK AND POWER PROBLEMS I

5. While rowing in a race, John uses his arms to exert a force of 165 N per stroke while pulling the oar 0.80 meters. How much work does he do in 30 strokes?

Formula	Set Up & Solve	Answer
6. Dragging a suitcase for 25 me	eters requires 3,600 Joules of work. How	much force was exerted on the suitcase?
Formula	Set Up & Solve	Answer

	1

7. Anna walks up the stairs on her way to class. She weighs 565 Newton's and the stairs go up 3.25 meters vertically. What is her power if she climbs the stairs in 12.6 seconds?

Set Up & Solve	Answer
	Set Up & Solve

What is the nower if 250 L of work is done in 100 seconds?

Formula	Set Up & Solve	Answer

How much time does it take for 30 loules of work to be done by 2.0 Watts of power? ۵

Formula	Set Up & Solve	Answer

10. A mechanic's power output is 107 Watts when he uses a jack to lift a car in 5.0 seconds. What is the amount of work done on the car?

What type of machines is this called?

CALCULATING POWER I

Formula Manipulations Solve For:

1. A set of pulleys is used to lift a piano weighing 1, 000 Newton's. The piano is lifted 3 meters in 60 seconds. How much power is used?

Formula	Set Up & Solve	Answer

2. How much power is used if a force of 35 Newton's is used to push a box a distance of 10 meters in 5 seconds?

Formula	Set Up & Solve	Answer

3. What is the power of a kitchen blender if it can perform 3,750 joules of work in 15 seconds?

Formula	Set Up & Solve	Answer

4. How much work is done using a 500-watt microwave oven in 5 minutes?

Formula	Set Up & Solve	Answer

CALCULATING POWER I

5. How much work is done using a 60-watt light bulb for 1 hour?

Formula	Set Up & Solve	Answer

6. How much power is needed to lift a 200 Newton object to a height of 4 meters in 4 seconds?

Formula	Set Up & Solve	Answer
i viinaia		Allywei
	l	

7. What is the power output of an engine that does 60,000 Joules of work in 10 seconds?

Formula	Set Up & Solve	Answer

8. How much power is needed to lift an object that weighs 200 N to a height of 4 meters in 12 seconds?

Formula	Set Up & Solve	Answer

Directions: Write the letter that best answers the question or completes the statement on the line.

____ 1. In which of the following is no work done:

(a) Climbing stairs,	(b) Lifting a book,	(c) Pushing a cart	(d) None of the above
----------------------	---------------------	--------------------	-----------------------

2. If you exert a force of 10.0 N to lift a box a distance of 0.75 meters, how much work do yo	ou do?
--	--------

(a) 0.075 J, (b) 7.5 J, (c) 10.75 J, (d) 75 J

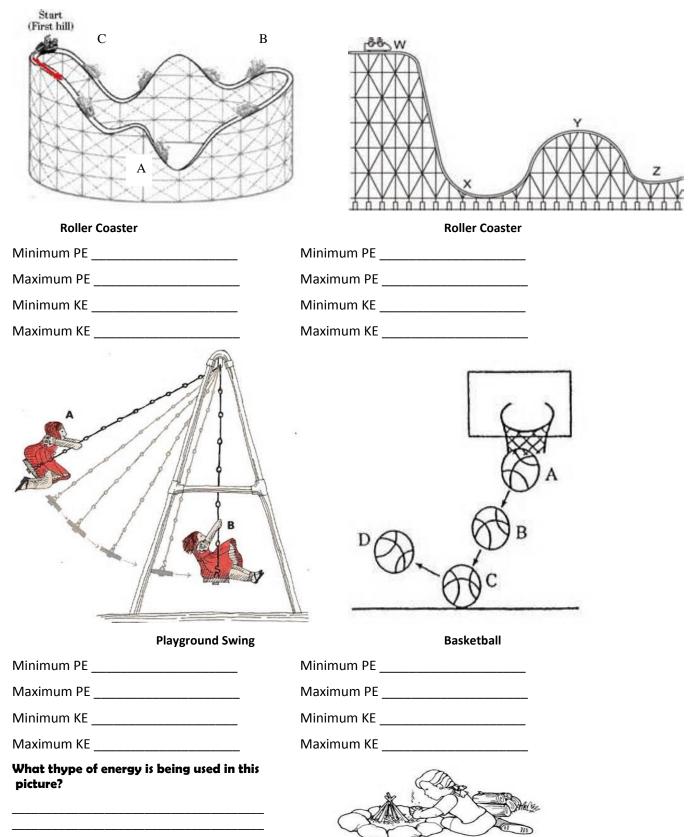
3. If you perform 30 joules of work lifting a 20-N box from the floor to a shelf, how high is the shelf?

(a) 0.5 meters, (b) 1.5 meters, (c) 0.6 meters, (d) 2 meters

4. If you exert a force of 500 N to walk 4 meters up a flight of stairs in 4 seconds, how much power do you use?

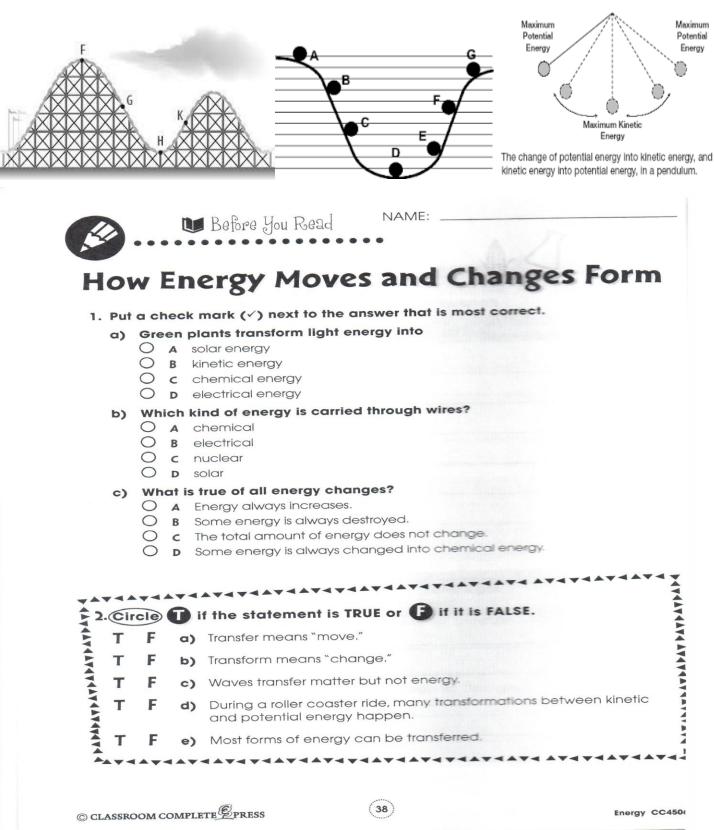
(a) 31 Watts, (b) 500 Watts, (c) 2,000 Watts, (d) 8,000 Watts,

_____ 5. What is the unit of work?


(a) joule, (b) watt. (c) Newton / meter (d) all of the above

6. Calculate the force a person exerts in pulling a wagon 20 meters if 1,500 joules of work are done?

(a) 7.5 Newton's, (b) 30,000 Newton's, (c) 0.75 Newton's, (d) 75 Newton's


Potential & Kinetic Energy Worksheet

Directions: Identify all the Maximum and Minimum Potential Energy & Kinetic Energy regions.

Supplementary Insert

Physical Science 2015

FREE FALL

Name	Period		Date
	Concept-Dev		t 2.2
	Practice	Page	
Free Fall Speed			
1. Aunt Minnie gives you \$10 per second for 4 s	econds. How much m	oney do you l	nave
after 4 seconds?			
E CAP			
-E-SHE	S DE		
A CONTRACTOR	E in		
- /			
2. A ball dropped from rest picks up speed at 1 for 4 seconds, how fast is it going?	0 m/s per second. Afte	r it falls	
3. You have \$20, and Uncle Harry gives you \$10) each second for 3 sec	onds.	
How much money do you have after 3 secor			
4. A ball is thrown straight down with an initial how fast is it going?	speed of 20 m/s. After	r 3 seconds,	
	1 147 11		
5. You have \$50 and you pay Aunt Minnie \$10/			<u>A</u>
6. You shoot an arrow straight up at 50 m/s. W	hen will it run out of s	peed?	- ::
7. So what will be the arrow's speed 5 seconds	after you shoot it?	<u>.</u>	
8. What will its speed be 6 seconds after you sh	oot it? 7 seconds?	C	
			1
Free Fall Distance			1
1. Speed is one thing; distance another. Where	is the arrow you		i.
shoot up at 50 m/s when it runs out of speed		1	- D
2. How high will the arrow be 7 seconds after b	eing shot up at 50 m/s	?	
3 a. Aunt Minnie drops a penny into a wishing		r 3 seconds be	efore
hitting the water. How fast is it going whe		FROM REST, U= 10t	}
b. What is the penny's average speed during	; its 3-second drop?	d=5t ²	
c. How far down is the water surface?		\sim	(E1))
4. Aunt Minnie didn't get her wish, so she goes a penny straight down into it at 10 m/s. Ho	to a deeper wishing w w far does this penny g	ell and throws o in 3 seconds	۶۶ ۶۶
$\overline{\sigma} = \frac{\sigma_{i} + \sigma}{2} =$	$\frac{U_{\bullet} + 10t}{2}$	Distinguis	sh between " how fast,")
(THEN d		"how far	;" and " how long "!
	E Di		V QQ
Conceptual PHYSICS	- ,		

©Addison-Wesley Publishing Company, Inc. All rights reserved.

Chapter 2 Linear Motion

5

Practice Test: - Chapter 4

Section 1: True / False

Indicate whether the sentence or statement is true (T) of false (F).

- 1. _____ Energy doesn't have to involve motion.
- 2. _____ Energy is the ability to cause a change.
- 3. _____ Energy is measured in joules.
- 4. Energy in the form of motion is potential energy.
- 5. A rock at the edge of a cliff has kinetic energy because of its position.
- When you ride a playground swing, your potential energy is the greatest at the highest point.
- 7. _____ Lowering an object decreases its potential energy.
- 8. Conduction is the transfer of energy by the bulk movement of matter.
- 9. _____ Radiation is the transfer of energy in the form of particles.
- 10. _____ Solar energy can be changed into thermal energy without any work being done.

Section 2: Modified True / False

Indicate whether the sentence is true of false. If false, change the *identified word* or *phrase* to make the sentence or statement true.

	11.	Thermal energy is energy stored in things that stretch or compress.		
--	-----	---	--	--

12 A toaster uses <i>chemical energy</i> to make toast	
--	--

13. Doubling an object's *velocity* will double its kinetic energy.

Section 3: Multiple Choices

Identify the letter of the choice that completes the statement or answers the question.

14 The kinetic energy of an object increases as its		_increases.
a. Gravitational energy b. Potential energy	c. specific heat d. velocity	
15 Increasing the sped of an object	its potential energy.	
a. Does not affect b. Increases	c. decreases d. changes	
16 The SI unit for energy is the	<u>.</u>	
a. Calorie b. Joule	c. meter per second d. kilogram	
17 Which of the following devices does not make use of	f electrical energy	
a. Upright piano b. Radio	c. toaster d. digital camera	

Practice Test: - Chapter 4

18In a nuclear fusion reaction,	mass is transformed into
a. Matter b. Nuclei	c. energy d. light
19 According to the law of con	servation of energy, the total amount of energy in the universe,
a. Remains constant	c. increases d. decreases
b. changes constantly20 The rate at which work is do	one is called
a. Efficiency b. Effort force	c. force d. power
21 The unit of power is the	
a. Joule b. Watt	c. m/s d. second
22 All of the following are goo	d conductors of heat EXCEPT
a. Air b. Aluminum	c. copper d. silver
23 Solar collectors are part of	a (n)
a. Active solar heating system b. External combustion engine	c. radiant heating system d. passive solar heating system
24 The process by which engin	e fuels burn is called
a. Combustion b. Condensation	c. conduction d. convection
25 Which of the following wou	Id be the best insulator?
a. Air b. Aluminum	c. copper d. silver
26 Through which of the follow	ving will convection most likely occur?
a. Liquids & gases b. Solids & liquids	c. solids d. solids & gases
27 The transfer of energy that	does NOT require mater is
a. Combustion b. Radiation	c. conduction d. convection

Practice Test: - Chapter 4

Section 4: Completion - Complete the sentence. 28. Stored energy is called ________ energy. 29. Work, like energy, is measured in _______. 30. When you move your hand or foot, your body has converted potential energy into _______ energy. Section 5: Short Answer 31. ______, which ball in Figure 4-1, has the greatest potential energy? Image: A model of A mode

32. _____, which ball in Figure 4-1, has the least potential energy?

Section 6: Problems

Show all of your work to receive complete credit. Round off answers to 2 decimal places. Write down units.

Work = Force / Distance

33. A person expended 500N to move a full wheelbarrow 30 meters. How much work was done?

Formula	Set Up & Solve	Answer
34 Dragging a suitcase for 25 meter	l s requires 3600 Joules of work. How much	force was exerted on the suitcase?
Formula	Set IIn & Solue	

Formula	Set Up & Solve	Answer

Which can exert more force?

- 1. _____
- 2. _____

Practice Test: - Chapter 4

Power = Work / time

35. A crane lifts a 35,000-N steel girder a distance of 25meters in 45 seconds. How much power did the crane require to lift the girder?

Formula	Set Up & Solve	Answer

GPE = mgh

36. What is the gravitational potential energy of a ceiling fan that has a mass of 75kg and is 4 meters above the ground?

Formula	Set Up & Solve	Answer

$KE = \frac{1}{2}mv^2$

37. A jogger whose mass is 60kg is running at a speed of 3 m/s. What is the jogger's kinetic energy?

Formula	Set Up & Solve	Answer

Explain the centrifugal forces in the picture below?

Centrifugal Centripetal		