

QLoopyLand * illustrationsOf.com/36384

"Orms of Energ]

Physical Science Vocabulary

Vocabulary for Chapter 4

No.\#	Term	Page \#	Definition
	Mechanical Energy		
	Elastic Potential Energy		
	Joule		
	Potential Energy		
	Kinetic Energy Formula		
	Law of Conservation of energy		
	Chemical Potential Energy		
	Gravitational Potential Energy		
	Kinetic Energy		
	Law of Conservation of Energy		
	Nuclear Fusion		
	Energy		
	Electrical Energy		
	Nuclear Energy		
	Nuclear Fission		

Impulse is defined as the integral of a force acting on an object, with respect to time. This means that impulse contains the product of force and time.

- Impulse changes the momentum of an object. As a result, a large force applied for a short period of time can produce the same momentum change as a small force applied for a long period of time.
- An impulse can act on an object to change either its linear momentum, angular momentum, or both.

IMPULSE = (FORCE) X (TIME)

Momentum is connected to force by impulse, which is simply if the force has a constant magnitude during its action. If the force changes with time, then one must integrate to find the impulse:

- Momentum is a vector. This means it has direction and magnitude. Momentum's magnitude is calculated by the formula $p=m v$.
- The Momentum-Impulse Theorem states that the change in momentum of an object is equal to the impulse exerted on it: (change in momentum) $=$ (impulse)

Impulse Practice Problems

Impulse $=$ Force \times time $=\vec{F} \Delta t$

$$
\Delta t=t_{\text {final }}-t_{\text {initial }}
$$

Impulse \& Momentum Worksheets

Momentum Practice Problems

1. What is the momentum of a 70 kg runner traveling at $10 \mathrm{~m} / \mathrm{s}$?

Formula	Set Up \& Solve	Answer

2. What is the momentum of an 800 kg car traveling at $20 \mathrm{~m} / \mathrm{s}$?

Formula	Set Up \& Solve	Answer

3. What is the momentum of a 47 gram tennis ball that is traveling at $40 \mathrm{~m} / \mathrm{s}$?

Formula	Set Up \& Solve	Answer

4. What is the momentum of a 120 pound bicyclist that is traveling at 25 mph ?

Formula	Set Up \& Solve	Answer

Momemtum in: $m v=m o m e n t u m$ out Kinetic energy in: $\frac{1}{2} m v^{2}=$ Kinetic energy out

Momentum

1. After the collision, does Granny's speed increase or decrease? \qquad
2. After the collision, does Ambrose's speed increase or decrease? \qquad
3. After the collision, what is the total mass of Granny + Ambrose? \qquad
4. After the collision, what is the total momentum of Granny + Ambrose? \qquad

Physics Worksheet
mornentum usins a math
erianste

Worksheet on different types of energy

Each type of energy has its advantages and disadvantages.
Research each source and complete the table below.

Energy source	Source always available	Good points	Bad points	When/where is the soure worth exploiting?
Solar				
Wind				
Wave				
Biomass				
Geothermal				
Hydropower				
Tides				
Coal				
Naclear power				
Oil				

Forms of Energy

All forms of energy fall under two categories:

POTENTIAL

Potential energy is stored energy and the energy of position (gravitational).

CHEMICAL ENERGY is the

 energy stored in the bonds of atoms and molecules. Biomass, petroleum, natural gas, propane and coal are examples.STORED MECHANICAL ENERGY is energy stored in objects by the application of force. Compressed springs and stretched rubber bands are examples.

NUCLEAR ENERGY is the energy stored in the nucleus of an atom-the energy that holds the nucleus together. The nucleus of a uranium atom is an example.

GRAVITATIONAL ENERGY

is the energy of place or position. Water in a reservoir behind a hydropower dam is an example.

KINETIC

Kinetic energy is motion. It is the motion of waves, electrons, atoms, molecules and substances.

ELECTRICAL ENERGY

is the movement of electrons. Lightning and electricity are examples.

RADIANT ENERGY
is electromagnetic energy that travels in transverse waves. Solar energy is an example.

THERMAL ENERGY or heat is the internal energy in substances-the vibration or movement of atoms and molecules in substances. Geothermal is an example.

MOTION is the movement of a substance from one place to another. Wind and hydropower are examples.

SOUND is the movement of energy through substances in longitudinal waves.

Forms of Energy I

Directions: Identify types of Energy forms in the picture below.

Forms of Energy II

Directions: List the 7 Forms of Energy.

Identify the form of Energy

Directions: Identify each type of Energy in the chart below.
Energy Transformation Game

Sun	Windmill	Microwave	Solar Calculator	Crane	Satellite Dish	Siren $=-\frac{1}{2}$
Tanning Bed	Nuclear Power Plant	Hot-air Balloon	Magnifying Glass	Candle	Electric Guitar	Firecracker
Battery	Piano	Light Bulb	Mixer	Iron	Lightstick	Bicycle
Television	Person Eating	Plant				
Em $=$ Electromagnetic $\mathbf{T}=$ Thermal			$\begin{aligned} & \mathrm{E}=\text { Electrical } \\ & \mathrm{C}=\text { Chemical } \\ & \mathrm{N}=\text { Nuclear } \end{aligned}$		$\begin{gathered} \mathrm{Mp}=\text { Mechanical (potential) } \\ \mathrm{Mk}=\text { Mechanical (kinetic } \end{gathered}$	

Identify the Form of Energy III

Directions: Identify each type of Energy in the chart below.

What kind of

 does it need?

Next to each item, write an F for Fossil Fuel, an M for Muscle Power, an S for Solar, or a W for Wind.

Work and Power Definitions

Work: is the product of a force exerted on an object multiplied by the object's displacement.

- Work can be defined as transfer of energy.
- Work is done on an object when you transfer energy to that object. If one object transfers (gives) energy to a second object, then the first object does work on the second object.
- Work is the application of a force over a distance.
- Work is the force is equal to the weight of the object, and the distance is equal to the height of the shelf ($\mathrm{W}=$ Fxd).

Work Formula

Power - is the rate at which is done.

- Power is the work done in a unit of time. In other words, power is a measure of how quickly work can be done.
- The unit of power is the Watt = 1 Joule/ 1 second.
- One common unit of energy is the kilowatt-hour (kWh).
- POWER (P) is the rate of energy generation (or absorption) over time: $\quad P=E / t$
- Power's SI unit of measurement is the Watt, representing the generation or absorption of energy at the rate of 1 Joule/sec.

Power Formula

WORK PROBLEMSI

Calculating Work: Work has a special meaning in science. It is the product of the force applied to an object and the distance the object moves. The unit of work is the Joule (J).

Formula

1. A book weighing 1.0 Newton is lifted 2 meters. How much work was done?

Formula	Set Up \& Solve	Answer

2. A force of 15 Newton's is used to push a box along the floor a distance of 3 meters. How much work was done?

Formula	Set Up \& Solve	Answer

3. It took 50 joules to push a chair 5 meters across the floor. With what force was the chair pushed?

Formula	Set Up \& Solve	Answer

Which of Newton's Law explains the pictures below?

WORK PROBLEMSI

4. A force of 100 Newton's was necessary to lift a rock. A total of 150 joules of work was done? How far was the rock lifted?

Formula	Set Up \& Solve	Answer

5. It took 500 Newton's of force to push a car 4 meters. How much work was done?

Formula	Set Up \& Solve	

6. A young man exerted a force of 9,000 Newton's on a stalled car but was unable to move it. How much work was done?

Formula	Set Up \& Solve	Answer

Find The Differences?

Broughton High School of wake county

WORK PROBLEMS II

Formula

7. A rock weighing 2 Newton's was lifted 3 meters. How much work was done?

Formula	Set Up \& Solve	Answer

8. A rock weighing 6.5 Newton's was moved 2 meters. How much work was done?

Formula	Set Up \& Solve	Answer

9. It took 600 Newton's of force to move a car 4 meters. How much work was done?

Formula	Set Up \& Solve	Answer

10. It took 45 Newton's to lift a crate 1.5 meters. How much work was done?

Formula	Set Up \& Solve	Answer

What is this method called?

\qquad

WORK PROBLEMS II

11. A box weighing 3.2 Newton's was moved 2.5 meters. How much work was done?

Formula	Set Up \& Solve	Answer

12. A box weighing 6.4 Newton's was moved 2.5 meters. How much work was done?

Formula	Set Up \& Solve	Answer

13. 45 joules were expended to move a box weighing 30 Newton's. How many meters was it moved?

Formula	Set Up \& Solve	Answer
		$\ldots \ldots \ldots, ~$
		m

14. It took 50 joules to push a crate 2.5 meters. With what force was the crate pushed?

Formula	Set Up \& Solve	Answer

Compare \& Contrast the methods of flight.

WORK AND POWER PROBLEMSI

Formula

Manipulations

Solve For:
\qquad
\qquad
\qquad

1. A box weighing 25 N is lifted 5.0 meters. Calculate the work done?

Formula	Set Up \& Solve	Answer

2. A force of 2000 N is needed to lift a refrigerator. If the work done is 800 joules, how high was the refrigerator lifted?

Formula	Set Up \& Solve	Answer

3. At least 2,500 Joules of work is needed to push a lawnmower for 100 meters. How much force was needed?

Formula	Set Up \& Solve	Answer

4. Lifting a book 0.50 meters off your desk requires 15.0 Newton's. How much work is done?

Formula	Set Up \& Solve	Answer

Which forces are acting on this weight lifter?

WORK AND POWER PROBLEMS I

5. While rowing in a race, John uses his arms to exert a force of 165 N per stroke while pulling the oar 0.80 meters. How much work does he do in 30 strokes?

Formula	Set Up \& Solve	Answer

6. Dragging a suitcase for 25 meters requires 3,600 Joules of work. How much force was exerted on the suitcase?

Formula	Set Up \& Solve	Answer

7. Anna walks up the stairs on her way to class. She weighs 565 Newton's and the stairs go up 3.25 meters vertically. What is her power if she climbs the stairs in 12.6 seconds?

Formula	Set Up \& Solve	Answer

8. What is the power if 250 J of work is done in 100 seconds?

Formula	Set Up \& Solve	Answer

9. How much time does it take for 30 Joules of work to be done by 2.0 Watts of power?

Formula	Set Up \& Solve	Answer

10. A mechanic's power output is 107 Watts when he uses a jack to lift a car in 5.0 seconds. What is the amount of work done on the car?

What type of machines is this called?

Mr. Davis

Broughton High School of wake county

CALCULATING POWER I

Formula

Manipulations

Solve For:
\qquad

\qquad

1. A set of pulleys is used to lift a piano weighing 1,000 Newton's. The piano is lifted 3 meters in 60 seconds. How much power is used?

Formula	Set Up \& Solve	Answer

2. How much power is used if a force of 35 Newton's is used to push a box a distance of 10 meters in 5 seconds?

Formula	Set Up \& Solve	Answer

3. What is the power of a kitchen blender if it can perform 3,750 joules of work in 15 seconds?

Formula	Set Up \& Solve	Answer

4. How much work is done using a 500-watt microwave oven in 5 minutes?

Formula	Set Up \& Solve	Answer

CALCULATING POWERI

5. How much work is done using a 60 -watt light bulb for 1 hour?

Formula	Set Up \& Solve	Answer

6. How much power is needed to lift a 200 Newton object to a height of 4 meters in 4 seconds?

Formula	Set Up \& Solve	Answer

7. What is the power output of an engine that does 60,000 Joules of work in 10 seconds?

Formula	Set Up \& Solve	Answer

8. How much power is needed to lift an object that weighs 200 N to a height of 4 meters in 12 seconds?

Formula	Set Up \& Solve	Answer

Directions: Write the letter that best answers the question or completes the statement on the line.
\qquad 1. In which of the following is no work done:
(a) Climbing stairs,
(b) Lifting a book,
(c) Pushing a cart
(d) None of the above
2. If you exert a force of 10.0 N to lift a box a distance of 0.75 meters, how much work do you do?
(a) 0.075 J ,
(b) 7.5 J ,
(c) 10.75 J ,
(d) 75 J
3. If you perform 30 joules of work lifting a $20-\mathrm{N}$ box from the floor to a shelf, how high is the shelf?
(a) 0.5 meters,
(b) 1.5 meters,
(c) 0.6 meters,
(d) 2 meters
4. If you exert a force of 500 N to walk 4 meters up a flight of stairs in 4 seconds, how much power do you use?
(a) 31 Watts,
(b) 500 Watts,
(c) 2,000 Watts,
(d) 8,000 Watts,
5. What is the unit of work?
(a) joule,
(b) watt.
(c) Newton / meter
(d) all of the above
6. Calculate the force a person exerts in pulling a wagon 20 meters if 1,500 joules of work are done?
(a) 7.5 Newton's,
(b) 30,000 Newton's,
(c) 0.75 Newton's,
(d) 75 Newton's

Potential \& Kinetic Energy Worksheet

Directions: Identify all the Maximum and Minimum Potential Energy \& Kinetic Energy regions.

Roller Coaster
Minimum PE \qquad
Maximum PE \qquad
Minimum KE \qquad
Maximum KE \qquad

Playground Swing
Minimum PE \qquad
Maximum PE \qquad
Minimum KE \qquad
Maximum KE \qquad
What thype of energy is being used in this picture?

POTENTIAL \& KINETIC ENERGY

The change of potential energy into kinetic energy, and kinetic energy into potential energy, in a pendulum.
\qquad

How Energy Moves and Changes Form

1. Put a check mark (\checkmark) next to the answer that is most correct.
a) Green plants transform light energy into
A solar energy
B kinetic energy
C chemical energy
D electrical energy
b) Which kind of energy is carried through wires?
A chemical
\bigcirc B electrical
\bigcirc C nuclear
D solar
c) What is true of all energy changes?
A Energy always increases.
B Some energy is always destroyed.
C The total amount of energy does not change.
D Some energy is always changed into chemical energy.

FREEALI

Free Fall Speed

1. Aunt Minnie gives you $\$ 10$ per second for 4 seconds. How much money do you have after 4 seconds?

2. A ball dropped from rest picks up speed at $10 \mathrm{~m} / \mathrm{s}$ per second. After it falls for 4 seconds, how fast is it going?
3. You have $\$ 20$, and Uncle Harry gives you $\$ 10$ each second for 3 seconds.

How much money do you have after 3 seconds?
\qquad
\qquad
4. A ball is thrown straight down with an initial speed of $20 \mathrm{~m} / \mathrm{s}$. After 3 seconds, how fast is it going?
5. You have $\$ 50$ and you pay Aunt Minnie $\$ 10 /$ second. When will your money run out? \qquad
6. You shoot an arrow straight up at $50 \mathrm{~m} / \mathrm{s}$. When will it run out of speed? \qquad
7. So what will be the arrow's speed 5 seconds after you shoot it?
8. What will its speed be 6 seconds after you shoot it? 7 seconds?

3 a. Aunt Minnie drops a penny into a wishing well and and it falls for 3 seconds before hitting the water. How fast is it going when it hits?
b. What is the penny's average speed during its 3-second drop?
c. How far down is the water surface?

4. Aunt Minnie didn't get her wish, so she goes to a deeper wishing well and throws a penny straight down into it at $10 \mathrm{~m} / \mathrm{s}$. How far does this penny go in 3 seconds?

Broughton High School of wake County

Practice Test: - Chapter 4

Section 1: True / False

Indicate whether the sentence or statement is true (T) of false (F).

1. \qquad Energy doesn't have to involve motion.
2. \qquad Energy is the ability to cause a change.
3. \qquad Energy is measured in joules.
4. \qquad Energy in the form of motion is potential energy.
5. \qquad A rock at the edge of a cliff has kinetic energy because of its position.
6. \qquad When you ride a playground swing, your potential energy is the greatest at the highest point.
7. \qquad Lowering an object decreases its potential energy.
8. \qquad Conduction is the transfer of energy by the bulk movement of matter.
9. \qquad Radiation is the transfer of energy in the form of particles.
10. \qquad Solar energy can be changed into thermal energy without any work being done.

Section 2: Modified True / False

Indicate whether the sentence is true of false. If false, change the identified word or phrase to make the sentence or statement true.
11. \qquad Thermal energy is energy stored in things that stretch or compress. \qquad
12. \qquad A toaster uses chemical energy to make toast. \qquad
13. \qquad Doubling an object's velocity will double its kinetic energy. \qquad
Section 3: Multiple Choices
Identify the letter of the choice that completes the statement or answers the question.
14. \qquad The kinetic energy of an object increases as its \qquad increases.
a. Gravitational energy
c. specific heat
b. Potential energy
d. velocity
15. \qquad Increasing the sped of an object \qquad its potential energy.
a. Does not affect
c. decreases
b. Increases
d. changes
16. \qquad The SI unit for energy is the \qquad .
a. Calorie
c. meter per second
b. Joule
d. kilogram
17. \qquad Which of the following devices does not make use of electrical energy \qquad .
a. Upright piano
c. toaster
b. Radio
d. digital camera
Broughton High School of wake county

Practice Test: - Chapter 4

18. \qquad In a nuclear fusion reaction, mass is transformed into \qquad -
a. Matter
c. energy
b. Nuclei
d. light
19. \qquad According to the law of conservation of energy, the total amount of energy in the universe, .
a. Remains constant
c. increases
b. changes constantly
d. decreases
20. \qquad The rate at which work is done is called \qquad .
a. Efficiency
c. force
b. Effort force
d. power
21. \qquad The unit of power is the \qquad -.
a. Joule
c. m / s

b. Watt

d. second
22. \qquad All of the following are good conductors of heat EXCEPT \qquad .
a. Air
c. copper
b. Aluminum
d. silver
23. \qquad Solar collectors are part of a (n) \qquad .
a. Active solar heating system
c. radiant heating system
b. External combustion engine
d. passive solar heating system
24. \qquad The process by which engine fuels burn is called \qquad .
a. Combustion
c. conduction
b. Condensation
d. convection
25. \qquad Which of the following would be the best insulator? \qquad .
a. Air
c. copper
b. Aluminum
d. silver
26. \qquad Through which of the following will convection most likely occur? \qquad .
a. Liquids \& gases
c. solids
b. Solids \& liquids
d. solids \& gases
27. \qquad The transfer of energy that does NOT require mater is \qquad .
a. Combustion
c. conduction
b. Radiation
d. convection
Broughton High School of wake County

Practice Test: - Chapter 4

Section 4: Completion - Complete the sentence.
28. Stored energy is called \qquad energy.
29. Work, like energy, is measured in \qquad -
30. When you move your hand or foot, your body has converted potential energy into \qquad energy.

Section 5: Short Answer

31. \qquad , which ball in Figure 4-1, has the greatest potential energy?

A

C

D
32. \qquad , which ball in Figure 4-1, has the least potential energy?

Section 6: Problems
Show all of your work to receive complete credit. Round off answers to 2 decimal places. Write down units.
Work = Force / Distance
33. A person expended 500 N to move a full wheelbarrow 30 meters. How much work was done?

Formula	Set Up \& Solve	Answer

34. Dragging a suitcase for 25 meters requires 3600 Joules of work. How much force was exerted on the suitcase?

Formula	Set Up \& Solve	Answer

Which can exert more force?

1.
2. \qquad

Broughton High School of wake County

Practice Test: - Chapter 4

Power = Work / time
35. A crane lifts a $35,000-\mathrm{N}$ steel girder a distance of 25 meters in 45 seconds. How much power did the crane require to lift the girder?

Formula	Set Up \& Solve	Answer

GPE $=\mathbf{m g h}$
36. What is the gravitational potential energy of a ceiling fan that has a mass of 75 kg and is 4 meters above the ground?

Formula	Set Up \& Solve	Answer

$K E=1 / 2 m v^{2}$
37. A jogger whose mass is 60 kg is running at a speed of $3 \mathrm{~m} / \mathrm{s}$. What is the jogger's kinetic energy?

Formula	Set Up \& Solve	Answer

Explain the centrifugal forces in the picture below?

\qquad

