

Work and Machines

Figure 1-6.-Your arm is a lever.

Physical Science Vocabulary

Vocabulary for Chapter 5 - Work and Machines

No.\#	Term	Page \#	
1.	Compound		
Machine			

Rube Goldberg's Machines

Rube Goldberg was an American cartoonist in the early 1900s. He became famous making cartoons like the one below. In them a simple or silly task is accomplished in an extremely complicated and humorous way. His machine for a self-operating napkin uses a parrot, alarm clock and fireworks!

> Using the six simple machines (pulley, lever, wedge, screw, inclined plane and wheel \& axle) can you make your own Rube Goldberg machine? Think of an everyday task you would like to accomplish, and make a machine for it using all six of the simple machines.

TYPES OF LEVERS

Classify the following levers as first, second or third class.

Broughton High school

The Force of Friction

Section 1: Turn to page 70 in your textbook: "Glencoe Science" - Physical Science

1. A skateboard that has been pushed will slow down and finally \qquad . When an object slows down it is \qquad .
2. According to Newton's \qquad Law, if the skateboard is accelerating, there must be a skateboard down is \qquad .
3. This force \qquad the sliding motion of two \qquad that are touching each other and it depends on the \qquad pressing the surfaces together and the \qquad of surfaces that are touching.
4. (Pg. 71) When something is too heavy to lift, you might try pushing it. If it doesn't move even though you are pushing on it, then the acceleration is \qquad This means the net force is
\qquad
5. According to Newton's \qquad Law it takes a net force to produce \qquad _.
6. What is another force that cancels the force of your push? \qquad .
7. (Pg. 72) Suppose a friend helps you push the heavy object and pushing together, the objects moves. acts in the direction opposite the motion of the heavy object.
8. To keep the object moving you must continually apply a \qquad to overcome the \qquad .
9. As a wheel rolls over a surface the wheel digs into the surface. is the frictional force between a rolling object and the surface it is on.
10. (Pg. 73) Fluid friction is the friction between an object and the air or water. A friction-like force called
\qquad opposes the motion of objects that move through the air.

Explain the forces of wind on stationary objects?

Simple Machines

Strew

A strew is o gylinder with threpods spiogling down it, A scride turns a twisling molon infor straight molon. When a actew is turned into wood the whod is mored up or down in o atraight line olong the strow and is sopped by the heod.

A colstrew is one example of o tetew, Con you think of any oner?

Name:

The Six Simple Machines

Drections: Correctly label the six simple machines.
(1) inclined plane
(3) pulley
(5) wedge
(2) lever
(4) screw
(6) wheel and axle

Section 2: Classify the following types of friction that might occur in each of these situations.
$\mathrm{F}=$ Fluid Friction
ST = Static Friction
SL $=$ Sliding Friction
$\mathrm{R}=$ Rolling Friction
11. \qquad a boat moving through a river
12. \qquad riding your bike
13. \qquad cartilage moves against bone
14. \qquad a rocket jets through the atmosphere
15. \qquad you push a car with the emergency brake on
16. \qquad ice skating
17. \qquad sitting in a chair at a computer
18. \qquad duck glides through a pond
19. \qquad using a mouse pad while navigating the computer screen
20. \qquad gears (cogs) on a wheel turn
21. \qquad the surface of a waiter's tray keeps the glass and pie in place
22. \qquad fish swim in an aquarium
23. \qquad a tennis ball sticks to Velcro
24. \qquad a tennis ball rolls off the court
25. \qquad a housewife can't move the refrigerator
26. \qquad playing air hockey
27. \qquad

31. \qquad

32.
\qquad

28.

29. \qquad hydroplaning with water under the car tires
30. \qquad

33. \qquad

Find The Simple Machines

Find and color the six simple machines in these bedroom scenes.

6 Types Simple Machines

1. A pulley is a simple machine that uses grooved wheels and a rope to raise, lower or move a load. A pulley is a type of simple machine that uses a wheel with a groove in it and a rope. The rope fits into the groove and one end of the rope goes around the load.
2. A lever is a stiff bar that rests on a support called a fulcrum which lifts or moves loads. The lever is made up of a straight rigid object like a board or a bar which pivots on a turning point called a fulcrum.
3. A wedge is an object with at least one slanting side ending in a sharp edge, which cuts material apart. If you put two inclined planes back to back, you get a wedge. A wedge is a simple machine used to push two objects apart.
4. A wheel with an axle, through its center lifts or moves loads.
5. An inclined plane is a slanting surface connecting a lower level to a higher level. An inclined plane is a flat surface with one end higher than the other. This allows for heavy objects to be slid up to a higher point rather than to be lifted. It's easier to slide something than to lift it.
6. A screw is an inclined plane wrapped around a pole which holds things together or lifts materials. A screw is a special kind of inclined plane. It's basically an inclined plane wrapped around a pole. Screws can be used to lift things or hold them together.
Section 3: Identify the follow pictures as a type of machine.

SIMPLE MACHINES

\qquad

What types of simple machines are shown in the following pictures?

Section 4: Identify each picture as a type of simple machine.

Section 5: Identify each type of simple machine

1. It is slanted surface that works like a ramp to lift things.

2. It is pair of inclined planes back-to-back that works to force things apart.

3. It is an incline spirally wrapped around a cylinder used to fasten things together.

4. It is a bar that pivots around a fixed point (Fulcrum). Figure 3.5. Lifting a loulder with a Wooden Lever \qquad
5. It is grooved wheel with a rope, cord, or chain through it.

6. It is a large and small wheel attached to a rod.

Section 6: Simple Machines Matching: Use Pulley, Inclined Plane, Screw, Wedge, \& Lever
7. Pliers
8. Ramp \qquad
9. Spiral Staircase \qquad
10. Chisel \qquad
11. Rake \qquad
12. Used to hoist a flag \qquad
13. Tack

Section 7: Short Definitions

21. Define fulcrum: \qquad
22. If an inclined plane is made steeper, what does that do to the mechanical advantage?
23. What is the formula for Mechanical advantage? \qquad
24. An inclined plane: \qquad
25. A pulley: \qquad
26. A lever: \qquad
27. What are the differences between FIXED PULLEY and MOVABLE PULLEY?
28. Define "Compound Machine" \qquad
29. Define Wedge: \qquad
30. Define Efficiency: \qquad
31. How would you define the simple machine known as the screw: \qquad ?
32. What is transferred to an object when work is done? \qquad
33. Define lever: \qquad
34. Define simple machine: \qquad

Inclined Planes

Inclined planes are also called ramps.
They make it easier to move things to a higher location.

Try to lift the basket with your hands. it's heavy! Next. try to move the basket up the ramp by pushing it, and then pulling it up with the rope. Which is the easiest way to move the basket?

With your grown up's help. add more blocks to the stack to make the ramp higher. Is it easier or harder to move the basket when the ramp is higher?

INCLINED PLANE

Kinetic \& Potential Energy
$K E=\frac{1}{2} m v^{2}$
$P E=m g h=F_{g} h$
$W=F \Delta d$
$P=\frac{W}{\Delta t}=\frac{F \Delta d}{\Delta t}$
35. Which has more kinetic energy: a $15,000 \mathrm{~kg}$ truck traveling at $40 \mathrm{~m} / \mathrm{s}$ or a $10,000 \mathrm{~kg}$ car traveling at $65 \mathrm{~m} / \mathrm{s}$?

Formula	Set Up \& Solve	Answer

36. A 5 kg book is perched on a 71 m above the floor. How much stored energy does that book possess?

Formula	Set Up \& Solve	Answer

37. Calculate the potential energy, kinetic energy, mechanical energy, velocity, and height of the skater at the various locations.

Potential Energy	Kinetic Energy	Velocity	Mechanical Energy	Height
$\mathbf{1}$				
3				

Kinetic \& Potential Energy

$$
K E=\frac{1}{2} m v^{2} \quad P E=m g h=F_{g} h \quad W=F \Delta d \quad P=\frac{W}{\Delta t}=\frac{F \Delta d}{\Delta t}
$$

38. Describe the Potential Energy and Kinetic Energy conversions in a roller coaster ride.

Select: Maximum PE

Minimum PE	Maximum KE	Minimum KE	
Position W	Position X	Position Y	Position Z

Quick Review: Types of Simple Machines

Section 8: Problems

39. How much power is required to lift a chair that weighs 40.0 N a distance of 0.25 m in 2.1 seconds?

Formula	Set Up \& Solve	Answer

40. A boy exerts a force of 56 N when he lifts a box 1.2 meters. How much work does he do?

Formula	Set Up \& Solve	Answer

41. A man pushes a parked car with a force of 175 N and the car does not move. How much work does the man do?

Formula	Set Up \& Solve	Answer

42. How much power is required to do 340 J of work in 6.4 seconds?

Formula	Set Up \& Solve	Answer

43. If 300 J of work lifts a 20 N object, how far has it been moved?

Formula	Set Up \& Solve	Answer

Broughton High school
Work \& Power II
44. A box weighing 60 N is lifted 1.5 m . How much work is done?

Formula	Set Up \& Solve	Answer

45. A small machine does 750J of work in 35 seconds. How much power does the machine supply?

Formula	Set Up \& Solve	Answer

Section 9: Problems
 What forces are acting against the flight of this plane?
46. Directions: Complete the chart below by filling in the missing quantities.

Force (Newton's)	Distance (meters)	Time (seconds)	Work (Joules)	Power (Watts)
10	6	4		
30	4	5	600	300
500	10			100
	16			64
100	0.5	2	100	25
200	50	30		1500
				4000
800	100			

Calculating Efficiency I

Section 10: Problems - What is the efficiency of the following machines?

The amount of work output from a machine is always less than the amount of work put into it. This is because some of the work is lost due to friction. The efficiency of a machine can be calculated using the following formula:

47. A man expands 100 Joules of work to move a box up an inclined plane. The amount of work produced is 80 J .

Formula	Set Up \& Solve	Answer

48. A box weighing 100 Newton's is pushed up an inclined plane that is 5 meters long. It takes a force of 75 Newton's to push it to the top, which has a height of 3 meters.

Formula	Set Up \& Solve	Answer

49. Using a lever, a person applies 60 Newton's of force and moves the lever 1 meter. This moves a 200 Newton rock at the other end by 0.2 meters.

Formula	Set Up \& Solve	Answer

Why is the Energy Star Rating of a washing Machine important?

Supplementary Insert

Worksheet Packet - Simple Machines

Identify the class of each lever shown below. Label the effort force, resistance force, and fulcrum.

1. \qquad 2. \qquad

2. \qquad 4. \qquad
3. Which of the above levers would be the most efficient at lifting a heavy block of granite? \qquad

Identify the class of each level in the drawing. Draw a line to indicate the position of the fulcrum, resistance arm, and effort arm using the monikers F, R, and E.

6. Bottle Opener \qquad

7. Pliers \qquad
9. Fishing Pole \qquad

10. Seesaw \qquad
11. Wheelbarrow \qquad

Calculating Efficiency II

Percent efficiency $=$ Work output X 100 Work input
50. A boy pushes a lever down 2 meters with a force of 75 Newton's. The box at the other end with a weight of 50 Newton's moves up 2.5 meters.

Formula	Set Up \& Solve	Answer

51. A person in a wheelchair exerts a force of 25 Newton's to go up a ramp that is 10 meters long. The weight of the person and wheelchair is 60 Newton's and the height of the ramp is 3 meters.

Formula	Set Up \& Solve	Answer

52. A pulley system operates with 40% efficiency. If the work put it is 200 joules, how much useful work is produced?

Formula	Set Up \& Solve	Answer

How many dinosaurs can you find?

Efficiency I

Efficiency $=($ AMA $/$ IMA $) X 100$
IMA $=d_{E} / d_{R}$
$\mathrm{AMA}=\mathrm{F}_{\mathrm{R}} / \mathrm{F}_{\mathrm{E}}$
53. You apply 1150 N effort force to lift a TV a height of 2 m using a ramp that is 12 meters long. The TV weighs 782 N . What is the efficiency of the machine?

IMA	AMA	Efficiency

54. You apply an effort force of only 730 N to push a chest of drawers weighing 4933 N along a 9 m long ramp to lift it up to a porch that is 1.2 m high. Calculate the efficiency?

IMA	AMA	Efficiency

55. What is the efficiency of a lever if a person uses an effort force of 33.3 N to raise on object that weighs 90 N ? They use a lever with an effort arm length of 6 m while the resistance arm length is 2 m .

IMA	AMA	

56. A box that weighs 95 N is lifted using an effort force of 20 N . The lever that helps the people do the work has an effort arm length of 50 cm and a resistance arm length of 10 cm . Calculate the efficiency.

IMA	AMA	

57. Calculate the efficiency of a lever that has an effort arm length of 5 ft . and a resistance arm length of 2 foot if an object weighing 112 N was lifted using an effort force of only 20 N .

IMA	AMA	Efficiency

Efficiency II

Efficiency $=($ AMA $/$ IMA $) \times 100$
IMA $=d_{E} / d_{R}$
$A M A=F_{R} / F_{E}$
58. An object weighting 270 n was lifted to a height of 3 ft . using a ramp that was 9 feet long. The effort force was only 122 N . Calculate the efficiency.

IMA	AMA	Efficiency

59. An inclined plane that is 25 m long and 5 m high was used to lift a 100 N object using an effort force of 25 Newton's. Calculate the efficiency?

IMA	AMA	Efficiency

60. A box weighting 80 N was lifted to a height of 12 ft . using an incline that was 36 feet long. The effort force required was only 30 N . Calculate the efficiency.

IMA	AMA	Efficiency

Identify the different types of machines?

Efficiency III

61. A person uses a pulley to raise a flag up a 15 m flagpole. The weight of the flag is 45 N and the person pulls down on the rope with a effort force of 50 N through a distance of 15 m .

IMA	AMA	Efficiency

62. A person exerts a force of 180 N through a distance of 0.5 m using a automobile jack to raise a 3600 N car a distance of 0.01 m up.

IMA	AMA	Efficiency

63. By exerting a force of 250 N through a distance of 0.6 m ., a person using a crowbar can lift the corner of a heavy machine which $14,250 \mathrm{~N}$ a distance of 0.01 meters.

IMA	AMA	Efficiency

Section 12: Problems

Problem	Resistance (Newton's)	Effort (Newton's)	AMA	Effort Distance	Resistance Distance	IMA	\% Efficiency
61							
62							
63							

64. In which problem did the machine have the greatest AMA? \qquad
65. In which problem did the machine have the greatest efficiency? \qquad
66. Explain why no machine can be 100% efficient.

Mechanical Advantage I

Section 13: Problems

HINT: $1{ }^{\text {st }}$ Calculate IMA \quad IMA $=d_{E} / d_{R}$

67. You see a ramp that's 24 meters long to lift a heavy box to a height of 5 meters. IMA:
68. The effort arm of a lever is 37 meters while the resistance is 12 meters from the fulcrum. IMA:
69. You use a lever with a 15 meter effort arm and a fulcrum that's 7 meter from the resistance. IMA: \qquad
70. The ramp you use to lift a heavy object 4 meter is 18 meter long. IMA:
71. You apply and effort to turn a wheel 12 cm while the resistance of the axle turns 1.5 cm . IMA:

Section 11: Problems

HINT: $2^{\text {nd }}$ Calculate AMA \quad AMA $=F_{R} / F_{E}$
72. You use a machine to lift an object that weighs 105 N with effort force of 33 N . AMA:
73. An object that weighs 35 N is lifted with an effort force of only 15 N using a machine. AMA:
74. It takes an effort force of just 20 N to lift an object that weighs 325 N using a machine. AMA:
75. You apply an effort force of 75 N to lift a box that weighs 596 N . AMA:
76. You push with an effort force of 55 N to raise a load that weighs 128 N . AMA:

Mechanical Energy Worksheet

Mechanical Energy Worksheet

$$
P E=m g h \quad K E=1 / 2 m v^{2}
$$

1. What are the two main forms of mechanical energy?
2. A car is lifted a certain distance in a service station and therefore has potential energy relative to the floor. If it were lifted twice as high, how much potential energy would it have?
3. Two cars are lifted to the same elevation in a service station. If one car is twice as massive as the other, how do their potential energies compare?
4. How many joules of potential energy does a $1-\mathrm{N}$ book gain when it is elevated 4 m ? When it is elevated 8 m ?
5. A moving car has kinetic energy. If it speeds up until it is going four times as fast, how much kinetic energy does it have in comparison?
6. Consider a ball thrown straight up in the air. At what position is its kinetic energy a maximum? Where is its gravitational potential energy a maximum?
7. At what point in its motion is the KE of a pendulum bob a maximum? At what point is its PE a maximum? When its KE is half its maximum value, how much PE does it have?
8. What is the kinetic energy of $\mathbf{a} 2 \mathrm{~kg}$ snow ball thrown through the air at $5 \mathrm{~m} / \mathrm{s}$?

1 What are the two main forms of mechanical enerov?

Sample Problems

Mechanical Adrantaze of the pulley
Write the mechanical adruatiage of each pulley in the space provided Circle the pulley which is easies to o sse.

Mecharical Advantage of the inclined plane

Write the mechanical advantage of ecch ramp in the space provided. Circle the ramp which is asiest to use.

$M A=$ \qquad

7
\qquad
\qquad

MECHANICAL ADVANTAGE

\qquad
What is the mechanical advantage of the following simple machines?

$$
\begin{aligned}
M A=\frac{F_{R}}{F_{E}} \quad \text { where } F_{R} & =\text { resistance force } \\
F_{E} & =\text { effort force }
\end{aligned}
$$

1.

4.

6.
5.

8.
7.

