

1

Physical Science Vocabulary

Vocabulary for Chapter 7 – Electricity

Vocabulary Word	Definition
1. Charging by Contact	
2. Charging by Induction	
3. Circuit	
4. Conductor	
5. Electric Current	
6. Electric Power	
7. Insulator	
8.Law of Conservation of Charge	
9. Ohm's Law	
10. Parallel Circuit	
11. Resistance	
12. Series Circuit	
13. Static Electricity	
14. Voltage Difference	+

Student Physical Science Workbook

Note-Taking "Electricity"

3

_•

cti	on 1: - Electric Charge
A.	Protons have electric charge; electrons have electric charge.
1.	In most atoms, the charges of the protons and electrons cancel each other out and the atom has no
2.	Atoms become charged by gaining or losing
3.	Static electricity – the accumulation of excess on an object.
B.	Electrically charged objects obey the following rules:
1.	Law conservation of charge – charge may be transferred from object to object, but it cannot be or
2.	Opposite charges, and like charges
3.	Charges can act on each other even at a, because any charge that is placed an electric field will be pushed or pulled by the field.
4.	Electrons move more easily through conductors, like
5.	Electrons do not move easily through, such as plastic, wood, rubber, and glass.
C.	Transferring electric charge
1.	Charging by
a.	The process of transferring charge by or
b.	Example: static electricity from your feet the carpet.
2.	Charging by
a.	The rearrangement of electrons on a neutral object caused by a nearby object.
b.	Example: a negatively charged balloon near your sleeve causes an area of your sleeve to become charged.
3.	Static
a.	A transfer of charge through the between two objects because of a buildup of static electricity.
b.	Example:
4.	Grounding – using a to direct an electric charge into the ground.
D.	The presence of electric charges can be detected by an
	What is an Electroscope?
	Electrical

Sectio	on 2: - Elect	ric Current))	7	
A.	The flow of c	harges through a wire or	conductor is called elect	tric	·
1.	Current is usu	ally the flow of			
2.	Electric curren	nt is measured in			(A).
3.	Charges flow	from	voltage to		voltage.
a.	A voltage diff	ference is the		that cause	es charges to move.
b.	Voltage different	ence is measured in			(V).
4.	For charges to	o flow, the wire must always	ays be connected in a clo	osed path, or	·
B.	Sources of ele	ectricity:			
1.	A between its zin	nc container and its carbo	on suspension rod, causir	battery produces a ng current to flow betw	voltage difference veen them.
2.	Α		battery contains two co	nnected plates made of	f different metals in
	a conducting	solution.			
3.	two holes of a	n alastrical system and a	conceptor at a power pla	have voltage dif	ference across the
C.	Resistance – 1	the tendency for a materia	al to oppose the flow of energy and	electrons, changing el	ectrical energy into
1.	All	materials	have	some	electrical
2.	Resistance is	measured in			(Ω).
3.	Making wires	thinner, longer, or hotter			the resistance.
D.	Ohm's Law –	the current in a circuit ed	quals the voltage differen	ce divided by the	·
Sectio	on 3: - Elect	ric Circuits			
A.	Circuits rely of charge to	on generators at power pl	lants to produce a voltag the circuit is complete.	e difference across the	outlet, causing the
1.	Series circuit	- the current has only on	e		to flow through.
a.	The parts of	f a series circuit are	wired one after anoth through every part.	ner, so the amount	of current is the
b.	flows through	the circuit.	if any part of a	a series circuit is disco	nnected, no current
c.	Example: strin	ngs of			·
2.	Parallel circu	it – contains two or more	e	for current to	move through.
a.	Individual par	rts can be		without affecting the	ne entire circuit.
b.	Example: the	electrical system in a			
What's	wrong with this	electrical outlet?			

4

Section 3: - Electric Circuits

B.	Household circuits use	circuits connected in a logical network.
1. 2.	Each branch receives the standard	from the electric company. breaker or
3. a.	Guards against overheating electric wires: - cc current becomes too high, opening the circuit and sto	sockets, major appliances, and lights. ontains a small piece of metal that melts if the opping the flow of current.
υ.	gets hot, opening the circuit and stopping the flow of	current.
C.	Electrical energy is easily converted to mechanical, t	hermal, or energy.
1.	Electrical power – the rate at which	energy is converted to another
	a. Electrical power is expressed in	(W).
	b. Power = current X	
	c. P (watts) = I (amperes) X	
2.	To calculate the amount of energy an appliance uses	
	a. The unit of electrical energy is the of power used for one hour.	, which equals 1000 watts
	b. Energy = power X	
	c. $E(kWh) = P(kW) X$	
	"Find your way to t	the water?"
	$ \begin{array}{c} 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	

Section 4 – Static Electricity

In the diagram below show the positive and negative particles in the balloon and the girl's hair after they are rubbed together.

1. The flow of electrons: _____

2. When an object is positively charged it has more ______ than _____.

- 3. When an object is negatively charged it has more ______ than _____.
- 4. When two objects, each having more electrons than protons, are brought close to each other, they will ______ each other.

Write the word or phrase from column B in the space below before its description in column A.

	Column A	Column B
 a.	Electrical charges at rest	Static
 b.	Objects having more + than - charges	Neutron
 с.	Produces a form of electricity	Positively charged
 d.	No positive or negative electrical charge	Negatively charged
 e.	Objects having more – than + charges	Friction

- 5. Identify the following as: Positive (+), Negative (-), or Neutral (0)
- _____ Is attracted to an electron.
- Most objects we encounter.
- An object that has 514 electrons and 275 protons.
- Something that is repelled by an object that has gained electrons.
- _____ Will not attract or repel anything.
- _____ An object with 5 more protons than electrons.
- _____ An object that will take electrons from the earth when it is grounded.

Calculate the total charge in each circle.

Positive Charges (+) = Negative Charges (-) = Net Charges = _____

Positive Charges (+) = Negative Charges (-) = Net Charges = _____

Positive Charges (+) = Negative Charges (-) = Net Charges = _____

Positive Charges (+) = Negative Charges (-) = Net Charges = _____

Mr. Davis

Section 5 – Ohm's Law

Complete the following memory circle AND the chart below.

1. What voltage produces a current of 50.0 amps with a resistance of 20 Ω ?

	1	
Formula	Set Up & Solve	Answer

2. What is the current produced with a 9-V battery through a resistance of 100Ω ?

Formula	Set Up & Solve	Answer	

3. What resistance would produce a current of 200 A with a potential difference of 2000 Volts?

Formula	Set Up & Solve	Answer

4. A 12-Volt battery produces a current of 25 A (amperes). What is the resistance?

5 1		
Formula	Set Up & Solve	Answer

5. Silver has a resistance of 0.00198 Ω . What voltage would produce a current 100 amps (amperes)?

Formula	Set Up & Solve	Answer

Section 5 – Ohm's Law

6. What voltage produces a current of 150.0 amps with a resistance of 2.0 Ω ?

Formula	Set Up & Solve	Answer

7. What is the current produced with a 9-V battery through a resistance of $1,000\Omega$?

Formula	Set Up & Solve	Answer

8. What resistance would produce a current of 250 A with a potential difference of 24,000 Volts?

I I '		
Formula	Set Up & Solve	Answer

9. A 12-Volt battery produces a current of 35 A (amperes). What is the resistance?

Formula	Set Up & Solve	Answer

10. Silver has a resistance of 0.00198 Ω . What voltage would produce a current 150 amps (amperes)?

Formula	Set Up & Solve	Answer

Section 6 - Electricity Problems

1. A circuit has a resistance of 4Ω . What voltage difference will cause a current of 1.4A to flow in the circuit?

Formula	Set Up & Solve	Answer

2. How many amperes of current will flow in a circuit if the voltage difference is 9V and the resistance in the circuit is 3Ω ?

Formula	Set Up & Solve	Answer

3. If the voltage difference of 3V causes a 1.5A current to flow in a circuit, what is the resistance in the circuit?

6		
Formula	Set Up & Solve	Answer

4. The circuit in an appliance is 3A and the voltage difference is 120V. How much power is being supplied to the appliance?

Set Up & Solve	Answer
	Set Up & Solve

5. What is the current into a microwave oven that requires 700W of power if the voltage difference is 120V?

Formula	Set Up & Solve	Answer

6. What is the voltage difference in a circuit that uses 2420 W of power if 11A of current flows into the circuit?

Formula	Set Up & Solve	Answer

Section 6 - Electricity Problems

7. How much energy is used when an 110kW appliance is used for 3 hours?

Formula	Set Up & Solve	Answer

8. What is the resistance of a light bulb that draws 0.5 amps of current when plugged into a 120-V outlet?

Formula	Set Up & Solve	Answer

9. A circuit has a resistance of 6Ω . What voltage difference will cause a current of 2.1 A to flow in the circuit?

Formula	Set Up & Solve	Answer

10. How many amperes of current will flow in a circuit if the voltage difference is 5V and the resistance in the circuit is 2Ω ?

Set Up & Solve	Answer
	Set Up & Solve

11. The circuit in an appliance is 7A and the voltage difference is 120V. How much power is being supplied to the appliance?

Formula	Set Up & Solve	Answer

12. What is the current into a microwave oven that requires 700W of power if the voltage difference is 120V?

Formula	Set Up & Solve	Answer

What type of aquatic organism genertates electicity?

Section 6 - Electricity Problems

13. What is the voltage difference in a circuit that uses 2,420 W of power if 11A of current flows into the circuit?

Formula	Set Up & Solve	Answer

14. A microwave oven with a power rating of 1,200 Watts is used for 0.25 hours. How much electrical energy does the microwave use?

Formula	Set Up & Solve	Answer

15. The current in an electric clothes dryer is 15A when it is plugged into a 240-volt outlet. How much power does the clothes dryer use?

Formula	Set Up & Solve	Answer

16. A toaster oven is plugged into an outlet that provides a voltage difference of 120V. What power does the oven use if the current is 10A?

Formula	Set Up & Solve	Answer

17. A flashlight bulb uses 2.4 W of power when the current in the bulb is 0.8A. What is the voltage difference?

j l					
Formula	Set Up & Solve	Answer			
	• • • • • • • • • • • • • • • • • • • •				

How much electrical energy does a vending Machine use?	
	Copyright © Ren Leishman * http://TeenChps.com/8808

Section 7: Multiple Choices

18 Of the following materials which would be the best choice	for insulating copper wire?
a. Aluminum foil	c. glass
b. Salt water	d. silicon
19 If you have an electrical circuit made of copper, which mate	erial below would make a good heating element?
b. Glass	d. iron
20 Which of the following is not a voltage source?	
a Battery	c solar cell
h Gasoline	d generator
	d. generator
21A static discharge differs from an electric current in that a s	static discharge
a. Involves the movement of ions as well as electrons	
b. Is a flow of electrons	
c. Lasts for only a fraction of a second	
d. Results because a force is exerted on the electrons	
22A material through which electrons DO NOT easily flow is	s a (n)
a. Conductor	c. insulator
b. Fuse	d. transformer
23 If the leaves of an electroscope spread apart, it indicates that	at
e. The leaves of the electroscope are neutral	
f. The leaves of the electroscope have received a charg	e
g. No charge is moving through the electroscope	
h. There is static electricity in the electroscope	
24Lighting is	
a. A buildup of neutrons	c. a high-voltage electric current
b. Harmless	d. a large discharge of static electricity
25. In the equation for Ohm's law, what does " I ' represent?	
a. impedance	c. impulse
b. resistance	d. current

Color the picture below.

Use a different color crayon for each number

Section 8: Matching

Matching Answer 26-30 using a - e below.

- 26. _____ Parallel Circuit
- 27. _____ Semiconductor
- 28. _____Ohm's Law
- 29. ____Conductor
- 30. _____ Series Circuit
- **a.** is a material with conductivity between a conductor and an insulator
- b. Circuits that have closed conducting loops that have at least one voltage source and one resistor
- **c.** A material through which electric charges can't easily flow
- **d.** States that the voltage is proportional to the current and that this relationship can be expressed by a constant called resistance
- e. Circuit in which a simple circuit is split into more than one loop with circuit elements on each path

Section 9 Completion

Figure 7-1

- 31. In Figure 7-1, circuit ______ is wired in series.
- 32. In Figure 7-1, circuit ______ is wired in parallel.
- 33. In Figure 7-1, circuit ______ represents the way homes are usually wired so that when one part of the circuit is interrupted the entire circuit is not broken.
- 34. In Figure 7-1, circuit _______ is the type of circuit that causes an entire string of decorative lights to go out when one of the bulbs burns out.

Section 10: Completion

Measurement	Unit	Symbol
35.	Ohm	
36.		kWh
37. Electrical power		
38. Voltage difference		
39.	Amperes	

40. Calculate the resistance between points A and B (R_{AB}) for the following resistor networks:

41. What is the current flowing through this circuit?

42. What is the power consumed by the light bulb in this circuit?

43. The illustration shows a _

- broken circuit a.
- b. open circuit
- c. parallel circuit
- series circuit d.

Figure 1: $R_{AB} = 500 \Omega$ **Figure 4:** $R_{AB} = 940 \Omega$ **Figure 2:** $R_{AB} = 750 \Omega$ **Figure 5:** $R_{AB} = 880 \ \Omega$ Figure 3: $R_{AB} = 1.511 \text{ k}\Omega$ Figure 6: $R_{AB} = 80.54 \Omega$

$$I_{T} = I_{1} = I_{2} = I_{3} = \dots$$

Quantity	Symbol	Unit of Measurement	Unit Abbreviation
Current	1	Ampere ("Amp")	А
Voltage	E or V	Volt	V
Resistance	R	Ohm	Ω

Student Physical Science Workbook

Chapter 7 - Electricity 2016

Section 10: Completion

44. The total current flow in this circuit is _

- a. 0.52 A
- b. 0.96 A
- c. A
- d. 1.9 A

ELECTRICITY AND ELECTRONICS

Z	Е	Е	٧	А	W	0	R	С	Ι	М	Н	К	В	W
R	0	D	s	D	Ø	к	Т	F	к	С	М	А	А	А
в	Е	s	0	М	Ζ	С	Ι	Ν	Т	Ι	Т	Т	G	М
z	υ	М	Ι	Ι	Τ	Ρ	Ρ	Ι	С	Т	Т	R	Е	Ρ
Ι	в	в	R	D	D	0	W	R	Е	R	Ζ	Н	Ζ	L
Г	М	G	к	0	Ш	s	0	R	А	Р	Μ	Ш	Ш	Ι
к	F	0	W	0	F	Ρ	Υ	Е	J	С	Ι	0	R	F
z	Υ	А	Е	R	Н	s	L	R	F	0	в	S	А	Ι
А	Υ	А	Е	0	А	С	Ζ	Ι	Е	к	Z	Н	Т	Е
R	А	s	Ν	М	С	s	s	А	Ζ	к	٧	А	0	R
н	А	Е	Р	Ζ	к	٧	в	к	R	0	А	Н	В	W
L	J	Е	٧	0	L	Т	А	G	Е	Т	С	Е	М	G
х	R	Υ	Υ	С	z	Е	С	δ	Е	R	П	R	Б	Н
Е	٧	А	С	υ	υ	М	Т	U	в	Е	Ρ	Q	А	s
М	S	В	А	R	0	Т	S	Ι	S	Ζ	А	R	Т	М

Find the Following Words

- 1. ampere measure of current
- 2. amplifier signal booster
- 3. battery storage device
- 4. diode lets current flow only in one direction
- 5. Edison famed inventor
- 6. franklin he used a kite to demonstrate that lightning is a form of electricity
- 7. frequency measure of the rate of oscillation in alternating currents
- 8. generator electrical power maker
- 9. laser device that generates an extremely narrow light beam
- 10. Marconi inventor who first demonstrated wireless communication
- 11. microphone converts sound to electricity
- 12. microwave form of energy used in a common kitchen appliance
- 13. nuclear controversial way of producing electricity
- 14. ohms measure of electrical resistance
- 15. rheostat electrical control device
- 16. speaker converts electricity to sound
- 17. switch on-off device
- 18. transformer device used to change current or voltage in ac circuits
- 19. transistor miniature marvel of electronics
- 20. vacuum tube old device used in radio, tv, etc., now obsolete
- 21. voltage measure of electrical potential
- 22. watt Scottish inventor whose name is used as a measure of power

Part I. Solve all of the following problems using Ohm's Law and your Power Equation

23. A circuit has a resistance of 35Ω. What voltage difference will cause a current of 2.5 A to flow in the circuit?

Formula	Set Up & Solve	Answer

24. How many amperes of current will flow in a circuit if the voltage difference is 6V and the resistance in the circuit is 12Ω ?

Formula	Set Up & Solve	Answer

25. The circuit in an appliance is 8A and the voltage difference is 120V. How much power is being supplied to the appliance?

Formula	Set Up & Solve	Answer		

26. What is the current into a microwave oven that requires 5,100W of power if the voltage difference is 120V?

Formula	Set Up & Solve	Answer

27. What is the voltage difference in a circuit that uses 2,420 W of power if 12A of current flows into the circuit?

Formula	Set Up & Solve	Answer

28. What is the voltage in a dryer if the dryer uses 4,250 W of power when plugged into a 22.0-A wall outlet?

Formula	Set Up & Solve	Answer

29. What is the current in a toaster if the toaster uses 7,500 W of power when plugged into a 110-V wall outlet?

Formula	Set Up & Solve	Answer			

30. A series circuit has a current of 13A. The circuit contains a 150 Ω resister. What is the voltage of the circuit?

Formula	Set Up & Solve	Answer

31. This diagram represents a closed circuit. How much current flows through this circuit?

32. A flashlight bulb connected to a 6-V battery draws a 0.35 –A current. What is the power used by the flashlight bulb?

Formula	Set Up & Solve	Answer

33. A light bulb with a resistance of 50 ohms is plugged into a 120-volt outlet. What is the current flowing through the bulb?

<u> </u>		
Formula	Set Up & Solve	Answer

What field of science are these people possibly studying?

Student Physical Science Workbook

Chapter 7 - Electricity 2016

34. A motor has a current of 4A flowing through it when it is powered with a 12-V battery. What is the power used by the motor?

Formula	Set Up & Solve	Answer

35. A series circuit has a 6-V battery and 2 ohms of resistance. How much current will flow through the circuit? _

	5	6
Formula	Set Up & Solve	Answer

36. What voltage is required to run a 45-watt light bulb if the current is 0.9 ampere?

Formula	Set Up & Solve	Answer

37. How much current is used by a 120-V refrigerator that uses 750 W of power?

Formula	Set Up & Solve	Answer

Student Physical Science Workbook Ch

Part II. Answer the following questions about Circuits

38. A path that allows only one route for an electric current is called a ______.

- 39. Circuit ______ is wired in series.
- 40. Circuit ______ is wired in parallel.
- 41. Circuit ______ represents the way homes are usually wired so that when one part of the circuit is interrupted the entire circuit is not broken.
- 42. Circuit _______ is the type of circuit that causes an entire string of decorative lights to go out when one of the bulbs burns out.
- 43. This diagram represents a closed circuit with three light bulbs and a 10 Volt battery. If bulb #3 burns out in the circuit, what will most likely happen?

44. Which is the correct diagram for a parallel circuit with three light bulbs powered by a 24-V battery?

45. The diagrams represent two complete circuits. A 9-V battery is connected to two light bulbs as shown.

46. Which statement *best* describes what will happen?

- a. the light from circuit B will be dimmer because each light bulb must share its current with the other light bulb
- b. the light from circuit A will be brighter because each light bulb adds its current to the other light bulb
- c. the light from circuit B will be brighter because each light bulb has a direct path to both poles of the battery
- d. The light from Circuit A will be dimmer because each light bulb has a direct path to both poles of the battery.

47. Which *best* describes a circuit is series?

a. electrons have only one path at all times

- b. current values are different at various points in the circuit.
- c. electrons may take several paths.
- d. different parts are on separate branches.

48. Which statement is true about parallel circuits?

- a. they cease to function when one part of the circuit is disconnected.
- b. they are usually called open circuits.
- c. they provide one path through which current can flow.
- d. they contain separate branches through which current can flow

49.	Which of the following	DOES 1	NOT	provide a v	voltage or	potential	difference	in a	circuit?

a. wet cell	c. wires	
b. electrical outlet	d. dry cell or battery	
50. Resistance in wir	es causes electrical energy to be converted into which form of energ	y?

a. chemical energy	c. sound	

b. nuclear energy d. thermal energy

51. One source of constant electric current is a _.

a. transformerc. switchb. dry cell (battery)d. coulomb

52. Which of the following is a device designed to open an overloaded circuit and prevent overheating _____. a. circuit breaker c. resistor
b. magnet d. transformer
53. Current that does not reverse direction is called _____.
a. alternating current b. a fused current c. circuit current d. direct current

54. Currents that reverse direction in a regular pattern is called _____. a. alternating current b. direct current c. circuit current d. magnetic current

Part III Answer the following questions about Electromagnets

55. A student performed an experiment to determine the number of paper clips that are attracted to an electromagnet as the amount of current changes.

Data Table		
Current	Number of Paper Clips	
5 A	20	
10 A	40	
15 A	60	
20 A	80	

56. Which graph *best* describes the relationship between magnetism and electrical current?

57. A magnet is moved back and forth through a loop of wire as shown below. What will happen as the magnet is moved back and forth as shown?

a. the wire will attract the magnet b. the magnet will attract the wire c. the galvanometer needle will move back and forth d. the galvanometer needle will be on 0.

58. A student coiled wire around a nail, attached both ends to a 2.5-V battery, and attempted to lift paper clips with the nail. What is a valid conclusion for this investigation?

Results				
Number of Turns of Wire	Paper Clips Picked Up			
10	2			
20	4			
30	10			
40	20			

a. increasing voltage increases electromagnetic strength

b. increasing the number of turns of wire decreases the electromagnetic strength

c. increasing the number of turns of wire has no effect on electromagnetic strength

d. increasing the number of turns of wire increases the electromagnetic strength

Part IV Answer the following questions about Static Electricity and Charges

- 59. If the leaves of an electroscope spread apart, it indicates that ______.
- 60. Electric charge that has accumulated on an object is referred to as ______.
- 61. A static discharge differs from an electric current in that a static discharge ______
- 62. The diagram shows a negatively charged balloon. When the balloon is brought near some paper, the papers are attracted to the balloon by means of ______ and become ______.

- 63. When a plastic rod is rubbed with fur, the plastic rod becomes ______ charged. Electrons are transferred from the ______ to the ______.
- 64. How do electrically charged objects affect neutral objects when they come in contact?
- a. Protons move from negatively charged objects to neutral objects
- b. Protons move from neutral objects to negatively charged objects
- c. Electrons move from positively charged objects to neutral objects
- d. Electrons move from neutral objects to positively charged objects
 - 65. Lighting is a large ______.
 - 66. The electric force between two charged objects depends on which of the following?
- a. their masses and their distance of separation
- b. their speeds
- c. their charge and their distance of separation
- d. their masses and their charge

67. An object becomes positively charged when it _____.

68. The drawing shows two uncharged lightweight plastic balls suspended by thin, insulating threads. Ball 1 is given a positive charge. Ball 2 is given an equivalent negative charge.

69. Which diagram *best* shows how the balls will react after becoming charged?

70. Which statement BEST explains why there could be a force of attraction between two electrically charged objects?

- a. because they have like chargesb. because they have unlike charges
- c. because they have the same number of electrons d. because they have the same number of protons
- 71. The diagram shows two copper spheres. Sphere 1 is negatively charged, and Sphere 2 is neutral. What will be the result when the two spheres touch?

- a. sphere 1 will become positively charged
- b. sphere 2 will become positively charged

c. both spheres will become negatively charged equal to the initial charge of sphere 1

d. both spheres will become negatively charged less than the initial charge of sphere 1.

Part V Answer the following questions about Magnetism

- 72. The location of the strongest magnetic forces is the _____
- 73. Objects that keep their magnetic properties for a long time are called _____.
- 74. The atoms in a magnet are _____
- 75. Which magnetic pole is located in Northern Canada?
- 76. A sheet of paper is positioned to completely cover a bar magnet. Iron fillings are then gently sprinkled on the paper.
- 47. How could 3 magnets be arranged end-to-end so that there will be no attraction between them? Make a sketch.

Which Magnet is stronger?

