\qquad Per: \qquad

Worksheet- Introduction to Specific Heat Capacities

Heating substances in the sun: The following table shows the temperature after 10.0 g of 4 different substances have been in direct sunlight for up to 60 minutes.

Time (minutes)	Air $\left({ }^{\circ} \mathrm{C}\right)$	Water $\left({ }^{\circ} \mathrm{C}\right)$	Sand $\left({ }^{\circ} \mathrm{C}\right)$	Metal $\left({ }^{\circ} \mathrm{C}\right)$
O (initial)	$25^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$
15.0 min	$28.9^{\circ} \mathrm{C}$	$26.2^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
30.0 min	$32.5^{\circ} \mathrm{C}$	$27.5^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$
45.0 min	$36.2^{\circ} \mathrm{C}$	$28.8^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
60.0 min	$40^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$

Step 1: Create a line graph for each substance on graph below. Label the substances.

3. When you boil water in a pot on the stove, which heats faster, the metal or the water? Explain.
4. Why do you think different substances heat up and cool down at different rates?

***Specific heat capacity = the amount of heat needed to raise the temperature of 1 g of a substance by 1 degree. ***

5. Based on the definition above, which of the 4 substances do you think has:
a) the highest specific heat capacity?
b) the lowest heat capacity?
6. Here are the heat capacities of the four substances: $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, 1.00 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, 0.80 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, \& $0.60 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{c}$. Match \& then label each substance with its specific heat capacity on the graph.
7. If something has a high specific heat capacity will it take a lot of heat or a little heat to change its temperature? Explain. (careful! Use the definition, your graph, and the data from \#6)
8. Assuming they both start at the same temperature, which will heat up faster, a swimming pool or a bath tub? Explain your thinking.

Worksheet-Calculations involving Specific Heat

1. For $q=m \cdot c \cdot \Delta T$: identify each variables by name \& the units associated with it.
2. Heat is not the same as temperature, yet they are related. Explain how they differ from each other.
a. Perform calculations using: $(q=m \cdot c \cdot \Delta T)$
3. Gold has a specific heat of $0.129 \mathrm{~J} /\left(\mathrm{g} \times{ }^{\circ} \mathrm{C}\right)$. How many joules of heat energy are required to raise the temperature of 15 grams of gold from $22^{\circ} \mathrm{C}$ to 85 ${ }^{\circ} \mathrm{C}$?
b. Determine if it's endothermic or exothermic
4. An unknown substance with a mass of 100 grams absorbs 1000 J while undergoing a temperature increase of $15^{\circ} \mathrm{C}$. What is the specific heat of the substance?

Endothermic or exothermic?
 3. If the temperature of 34.4 g of ethanol increases from $25^{\circ} \mathrm{C}$ to $78.8^{\circ} \mathrm{C}$, how much heat has been absorbed by the ethanol? The specific heat of ethanol is 2.44 $\mathrm{J} /\left(\mathrm{g} \times^{\circ} \mathrm{C}\right)$

Endothermic or exothermic?

4. Graphite has a specific heat of $0.709 \mathrm{~J} /\left(9 \times^{\circ} \mathrm{C}\right)$. If a 25 gram piece of graphite is cooled from $35^{\circ} \mathrm{C}$ to $18{ }^{\circ} \mathrm{C}$, how much energy was lost by the graphite?

Endothermic or exothermic?
6. 45 grams of an unknown substance undergoes a temperature increase of $38^{\circ} \mathrm{C}$ after absorbing 4172.4 Joules. What is the specific heat of the substance? Look at the table on page 513 of your book, and identify the substance.

Endothermic or exothermic?

7. A 40 g sample of water absorbs 500 Joules of energy. How much did the water temperature change? The specific heat of water (liquid) is $4.18 \mathrm{~J} /\left(9 \times^{\circ} \mathrm{C}\right)$.
